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ABSTRACT

A COMPREHENSIVE APROACH TO SENSOR MANAGEMENT AND SCHEDULING
Gregay A. Mcintyre, Ph.D.
George Mason University, September 1998

Dissertation Director: Dr. Kenneth J. Hintz

Heterogeneous multisensor systems have been widely used in a variety of mili tary and civili an
applications. While the majority of research in multisensor systems is dedicated to mili tary
applications, other appli cations include robot navigation, autonamous vehicles and paramili tary
operations. In general, singe sensor systems only provide partial information onthe state of the
environment while multisensor systems rely on dhta fusion techniques to combine related data from
multiple similar and/or dissmilar sensors. The gaal of a multisensor system is to provide a
synergistic effect that enhances the quality and avail abili ty of information about the state of the

world over that which would be acquired solely from one sensor.

Sensor management can be described as a system or processthat provides automatic or semi-
automatic control of a suite of sensors or measurement devices. Previous approaches to sensor
management all appear to suffer from the mixing d sensor physical requirements with information

neals. The result has been ad ha: point solutions that treat the problem as a singe optimization



task with a performance measure as a weighted sum of diverse, norcommensurate measures. This
dissertation presents a new mathematical representation d the multisensor system to capture the
sensor management process Based onthis representation, an ariginal hierarchical sensor
management modd is developed that partitions the system into its constituent processes. These
include the sensors themselves, the targets, the Fusion Space, and the Information Space. The
Information Space is further partitioned into the Misson Manager, the Information Instantiator,

and the Sensor Scheduler.

Addtionally, this dissertation describes a new approach which uses partially ordered setsto
construct a goal-lattice that converts qualitative misson galsto quantitative values for diff erent
sensor actions. This approach superimposes value apportionment on the lattice in arder to provide
amathematically quantitative and traceable measure of importance (weights) that a sensor manager
can useto gptimize trade-off s among competing management functions to med the misson gals.
Anather advantageis that these weights can vary as afunction d time or phase of a misson thus
providing a mathematically based methoddogy to modfy the preferences in real-time based on

changes in information produced by data fusion, a human gperator, or both.



Chapter 1

I ntroduction

1.1 Motivation and Problem Definition

Heterogeneous, multisensor systems (referred to hereafter simply as multisensor systems) have
been widdly used in a variety of mili tary and civili an applications. While the majority of research
in multisensor systems is dedicated to mili tary appli cations, other appli cations include robot
navigation[1], [2], [3], autonamous vehicles [4], [5], [6], and paramili tary operations (e.g. drug
interdiction[7]). In general, singe sensor systems only provide partial information onthe state of
the eavironment while multisensor systems rely on data fusion techniques to combine related data
from multiple similar and/or dissmilar sensors. The goal a multisensor system isto provide a
synergistic effect that enhances the quality and avail abili ty of information about the state of the

world over that which would be acquired soldly from one sensor.

Until recently, sensors were fewer in number and lesscapable than they aretoday. An
operator could easily decide which sensor to use, when to useit, point and control it, and even how
tointerpret thedata. Even the environment in which these systems were used was smpler with
fewer and lessdiverse threats. However, the performance characteristics of modern sensor systems
have improved dramatically resultingin more able and dverse systems [8]. These improved

performance characteristics include [9]:



—All weather

—Jam resistant
—Large search areas
—Emisgon cortrol
—Improved accuracy

—Aperture agili ty

These techndogical advances and the use of multisensor systems have also led to a tremendaus
increase in the amount of data requiring processng. The number, types, and agility of sensors
alongwith the increased quality and timelinessof data have far outstripped the abili ty of a human
to control them. With all of the diff erent types of sensor and norcommensurate data, it is often
difficult to compare how much information can be gained through a given sensor scheduling
scheme. This has resulted in a need for an automated sensor management system that optimally
schedules the sdection and use of indvidual sensors from amongthe several availablein the

system.

Sensor management can be described as a system or processthat provides automatic or semi-
automatic control of a suite of sensors or measurement devices in a dynamic, uncertain
environment. In general, it is the sensor manager that must determine [10]:

—Which service?

—What sensor?

—Whereto aim?

—When to start?



while monitoring sensor performance. At its sSmplest level, a sensor management systemisa
control processthat must deal with [11]

—Insufficient sensor resources

—Highy dyramic environment

—Varied sensor capabilities

—Varied sensor performances

—Randamly occurring sensor failures and

—Enemy interference and spodfing

Thus, a sensor manager is expected to [8]:
—Reduce the operator workload by automating sensor all ocation
—Prioritize measurement requests to mee both integrated flight management and weapons
control requirements
—Aid data fusion by coordinating information requests with sensor observations

—Support sensor reconfiguration and degradation cue to partial or total lossof a sensor

However, sensor management is only one part of the overall process One paradigm used to
explain the use of sensors and sensor management is $own in Figure 1-1. The key component of
this paradigm is information -- specifically how to gptimally obtain information about the state of
the environment through the application d sensors. Van Creveld [12] states that "The history of
command in war consists esentially of an endessquest for certainty about the state and intentions
of enemy forces ...". Itisinthedatafusion portion d the command and control system that sensor

measurements of the environment are processed in arder to reduce the commanders' uncertainty



Fusion Sensi ng
I nformation
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Processing

Develop
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Command Environment
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Figure 1-1: Command and Control Paradigm

about the environment. More specifically, "...datafusionis a processdealing with the association,
corrdation, and combination d data andinformation from rmultiple sensors and sources to achieve
refined position and identity estimation and complete timely assessments of situations and threst,

andtheir significance[13]."

A conceptual depiction d the overall processflow is shown in Figure 1-2. The eavironment is
comprised of a set of targets and their states. These target states can be divided into two subsets -
those targets that have nat been detected and those that have been detected and are, or will soonbe,
intrack. Thosetargetsthat arein track can be further subdivided into two subsets - targets that
have been identified and those that have nat been identified. Sensors under the cortrol of the
sensor manager make measurements of the physical phenomenonexhibited by the targets and

combine these into dbservations. These observations are then processed in arder to provide target
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Figure 1-2: ProcessOverview

state estimates. These estimates are then combined with ather sensory data and external inputs and
inferences to dotain information. The sensor manager then uses this information alongwith some,
nat necessarily time-invariant, performance measure to control the next measurements made by the
sensors. What these two paradigms show is that sensor management is a cortrol processand data

fusionis an estimation process It also highlights the fact that both processes are interrdlated.

1.2 Sensor M anagement Applications

Theimpetus for this research is based onwhat is called the “in harm’sway” misson d a
survelllance aircraft. The aircraft is capable of carrying several different types of sensors (e.g.
infrared, radar imaging systems, and eectronic surveill ance measures). Theaircraft is snt out on

a surveill ance missonwith ar without any a priori information about the target environment that it



isto gperatein. Theinformation sought hereis gate information about any potential threats
(targets). Thegoal of the missonisto detect, track, andidentify as many targets as possble.
Several other well defined mili tary appli cations are presented by Musick and Malhatra [9] and
Malhatra[14]. Essntially, the Sensor Manager’s task is to provide the most eff ective transfer of
information from the real world to aur internal mathematical modd of theworld. That is, subject
to gperational constraints, it is desired to minimize the mean-squared error between the actual and
estimated target state (both kinematic and nonknematic) through the all ocation d sensing

Iesources.

While most of the research in sensor management has been drected towards tactical military
applications, sensor management is nat limited to this application. Two ather examples include the
search and rescue of individuals in hazardous stuations and the management of several low earth
orbit satdli tes to maintain space object ephemeris. There also appears to be applications of this
approach to data mining in large databases. The search and rescue exampleis part of NASA’s
effort to develop and apply aerospace techndogies capable of locating aircraft, ships, spacecraft,
or indviduals in potential or actual distressand then provide immediate aid to extract victims to
safety. While this NASA effort spans a wide range of disciplines, sensor management can also be
applied to remote sensing.  Specifically, sensor management is required to manage the wide variety
of sensor (foli age penetrating synthetic aperture radar, laser systems and multi- and hyper-spectral
optical scanners) to detect and identify small targets and qotimize tactics for search using remotely
sensed cita. The satellite exampleis part of an ongang project for space object surveill ance
invaving approximately 30 low earth arbit satelli tes with severely constrained viewing geometry.

There are currently about 80000bjects (satelli tes, space junk, etc.) in arbit with a projected 15,000



objects dartly after theturn o the century. The constraints placed onthe sensor aboard each
satelli te include:
—Extremdy limited field of view due to the requirement to image the object against degp space
—Can't image against bright background (e.g. sun, moon, earth)
—Can't imagingin the Earth’s dhadow
—Track time durationis approximately 25 seconds (varies with target)
Addtionally, the viewing goportunities also vary in quality and are dependent on
—Viewing ange (better of larger ange)
—Distance from sensor to target (quality decrease with increasein distance)
—Sun ange and dject reflectivity (eff ects object brightnesg

—Target and satdli te movement during view

1.3 Major Contributions

A variety of partial (open-loop) sensor management approaches have been proposed (and will
be reviewed in Chapter 2), al of which appear to suffer from the mixing d sensor physical
requirements with information reeds. This commingling d inappropriate, norcommensurate
measures leads to ad ha methods of sensor management and nocomprehensive framework in
which to develop the separable components of a complete system. Thead ha nature of these
solutions, essentially “point solutions,” does nat allow for direct comparison, evaluation, or

evolutionary improvement.

The research presented in this dissertation proposes a new approach to sensor management

based oninformation theoretic measures and lattices of partially ordered sets (POSET) alongwith



a new, comprehensive hierarchical sensor management modd. Expected information ggin, as
measured by the expected changein entropy, has been shown to be a valid approach to sensor
management for determining the trade-off s between search, track, and identify. While using this
measure of information gained is a necessary condtion, it is not a sufficient condtion for complete
sensor management. That is, if one uses only information gained as a means to perform sensor

management trade-off s, it does nat take into acocount the multiplicity of competing misson gals.

The approach developed and presented in this research to overcome this limitation is the use of
inclusion relationships among g@ls and partially ordered sets of these goals. This facili tates the
construction d a hierarchy o goals and a mathematical means to weight the multiple, competing
gaals. Theresult is, regardlessof the type of scenario — military or civilian, a methodthat results
in anew, quantitative, and traceable measure of importance that a sensor manager can use to

perform and gotimize trade-off among search, track, and identify information reeds.

This hierarchical, reductionist sensor system introduced here maintains its own representation
of theworld a environment at different levels of abstractionin dfferent levels of the hierarchy.
The highest level in the hierarchy incorporates misson requirements and human inputs to determine
the values or relative preferences amongsearch, track, and identification as quantified by a
weighted, non-stationary, lattice of goals. The next level contains the function d information
management in the form of an information-to-observation mapper referred to as an Information
Instantiator (1) which conwverts an information reed into an doservation function (described in
greater detail in Section 2.4). The actual allocation d this observation function to a specific sensor

or set of sensors which make the measurements is optimized in the next level by a separate sensor



scheduler. The optimization criteria of the sensor scheduler are based onsensor related concerns
aswel as priorities assgned to doservation tasks by the Misson Manager (MM ) and passd to it

by the Information Instantiator.

A fundamental task of the information space, at least the sensor manager portion d it, isto
provide the most eff ective transfer of information from the world to our internal mathematical
modd of the world subject to gperational constraints andin consonance with a time-varying set of
ordered gaals. One component of that processis the conversion d information reeds required to
search for new targets, maintain targets in track, and identify targetsin track. A second component
is the manner in which the misson manager dispatches requests to the Information Instantiator.
The detail s of the quantification d goals and the determination d the relative value of search,

track, and ID is covered in Section 2.5.

Sincethetermindogy is nat generally agreed upon, for the purposes of this dissertation, the
following dfinitions will be used and are consistent with the definitions in the Oxford Engdlish
Dictionary [15]. Information isachangein uncertainty about something. An observationisthe
estimation d a property of a target through the mathematical combination d one or more
measurements, possbly combined with aher data. A measurement is the fundamental acquisition
of data ebout atarget through the use of some physical property of the target (e.g., reflected
energy) or environmental property caused to change by thetarget (e.g., wake).

The information space can be thought of as operating as the integration d two dff erent
concepts. Thefirst isa touch it onceapproach. Touch it onceimplies that when an event occurs,

the misson manager decides what to dg dispatches the task, remembers that it has dore so by
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putting the task ona queue, and waits for anather event (which may be an internal need as well as
an externally driven event). The second concept is that of a discrete event simulation (DES) in
which a queue of events to be performed at a later timeis maintained. The eventsreferred to here
are the tasks which have been passed to the Il but are also put on MM’ s queue indcating
measurements scheduled to be executed in the future. Entriesin this queue contain such data &
which contact number, what kind d information is needed, when is the information reeded, how

much informationis needed, and why this event was scheduled.

Going back to the*in harm’'sway” example, asaume that the misson manager hasnoa priori
information about its target world. Of the threechoices, neither tracking no' ID is appropriate, so
search isthe only alternative. The search task is dispatched to the sensor manager which searches
utilizing all the sensors until atarget is detected. This detection generates an event with which the
MM must now deal. Sinceit is the result of a search, the MM can now chocse to ether identify or
track based ontherdative value of the two gptions as determined by the nonstationary gaal
lattice. The Misson Manager then responds to the event by dispatchingto the ll portion d the
sensor manager a request for 1D or track data from thetarget. This request includes the goel-
derived value of the observation from the lattice as well as the required accuracy and temporal
constraints and places it in its own queue of dispatched requests. Thisis essntially a request for
information without indicating haw it is to be satisfied. The MM is nolonger concerned with the
queued task unlessor until the Il and/or the Sensor Scheduler reply to the request with ether the
result of the observation a an unalde-to-observe acknovledgment. It isimportant to nde that an

unale-to-observe response may be caused by too restrictive a requirement on the information, i.e.,
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areguest for the information too soon o at too low of a priority to preempt other executing a

scheduled sensor manager tasks.

1.4 Dis=ertation Overview

Chapter 2 provides a comprehensive description and literature review of the state-of-the-art
sensor management including a discusson d a newly proposed, mathematically rigorous sensor
management model of a multisensor system. Also dscussed is the formulation d a new and
original comprehensive mode which is used to develop an information theoretic approach to sensor
management combined with the use of partially ordered sets to compute weights or values of

different sensor functions in order to facili tate the trade-off s between them.

Thegoal of the research presented in this dissertationis to apply measures of informationto
managing multiple sensorsin arder to dbtain a near optimal real-time sensor utili zation within the
constraints of the misson requirements and sensor limitations. Chapter 3 briefly reviews the use of
information theory within the context of sensor management including a description d the
measures that will be used for calculating the expected information gain for search, track, and

identification. It further discusses why informationis chosen as the measure to maximize.

Kinematic state estimationis an important aspect used within a sensor management system.
As auch, areview of maneuvering target tracking is presented in Chapter 4 alongwith a

comparison d several Kalman filter modes used in the target kinematic state estimators.
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Thesimulation d the proposed sensor management modd is presented in Chapter 5 and the
results are presented in Chapter 6. Finally, Chapter 7 provides a summary of the work presented
here and concludes by discussng the strengths and limitations of this proposed sensor management

modd alongwith posdble future research.



Chapter 2

Sensor M anagement and Sensor Scheduling

2.1 The Sensor M anagement Role

Asdiscussd in Chapter 1, techndogical advances and the use of multisensor systems have led
to atremendaus increase in the amount of data being processed that has far outstripped the abili ty
of ahuman to cortrol it. The data provided by different sensorsis of different units, dimensions,
and types (detections, position, or target classor subclasg. With all of the different types of
sensors and this noncommensurate data, it is often dfficult to compare how much information can
be gained through a given sensor scheduling scheme. This has resulted in the need for automated

sensor management systems that optimally schedules sensor measurements.

Often the terms sensor management and sensor scheduling are used interchangeably but they
arenat the same. Sensor management can be defined as “ ... the processwhich seeks to manage or
coordinate the use of sensing resources in a manner that improves the processof data fusion and
ultimately that of perception, synergistically [16].” This reduces to an almost trivial situation if
thereis only ore sensor or no contention for sensor resources. Sensor scheduling refersto the
actual all ocation d measurement tasks to specific sensors. Figure 2-1 depicts the evolutionin
sensor management research and cevelopment (R& D) as characterized by Denton, et al.[10] As

sensor systems and the asociated computers and signal processng techniques

13
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Figure 2-1: R&D in Sensor M anagement Systems [10]

improved, the levels of data processng also evolved. Sensors of the 1960s era were simple
enough that the pil ot performed both the sensor management and data fusion functions himself.
Present-day sensors are more agil e and more numerous resulting in an increase in the amount of
data being processed. “As data quantities increase and cortrol choices multiply, workload
increases exponentially and eventually even the most able pil ots begin to missimportant
opportunities or fail to recogrize critical situations[9].” This has resulted in the need for

integrated automatic or semi-automatic sensor management systems.

Popoli [17] describes sensor management as a feadback control system. The system attempts
to dotain the most information from the avail able sensors by cortinually monitoring the sensors’
performance. Thisis dore by comparing performance relative to a specified criterion (see
Rothman and Bier [18] for a comprehensivelist of performance measures). This generates

feadback control to the sensors.
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Sensor management is important in terms of the benefits it provides over non-coordinated
sensor operation. By automating the process it reduces the operator workload. The operator
defines the sensor tasking criteria instead of cortrolli ng multiple sensors indvidually by specifying
each goeration to be performed by each sensor. In an automated, semi-autonamous sensor
management system, the operator concentrates on the overall objective while the system works on
the detail s of the sensor operations. This all ows for multisensor fusion by taking advantage of the
strengths of each sensor. Addtionally, the feedback within the sensor management system allows
for faster adaptation to the changng environment. Thus the sensor management system eff ectively

uses the limited resources available [17].

Therepresentation d the sensor management function and its relationship to deta fusion
developed and used in this research is $hown in Figure 2-2. Sensors are tasked to make
measurements of the ewvironment. These measurements are then processed to dotain doservations
and then combined to dbtain information. This informationis used by the Misson Manager (along
with internally or externally generated performance measurements) to generate information
reguests to be processed by the Sensor Manager. The Sensor Manager is partitioned into two
orthogoral functions, one concerned with the information to doservation request mapping
(Information Instantiator) and the other concerned with mapping these observation requests to
Sensors measurement requests or tasks (Sensor Scheduler). It isimportant to dstinguish between

the functions performed by the Information Instantiator and the Sensor Scheduler.
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While the Misson Manager is concerned with metasensor isaues sich as:

—How accurately to measure?

—Which serviceto perform (e.g., search, track, fire cortrol, etc.)?

—From what physical location d the environment to dotain a measurement?

—When is the erliest usable time to begin the measurement?

—What is the latest usable completiontime for the measurement?
the problem for the Information Instantiator is to determine how to maximize the df ectivenessof
individual sensors or a collection d sensors while simultaneously optimizing such corflicting
objectives or gaals as

—Detection

—Tracking

—ldentification/Clasgfication

—Emisgon cortrol (EMCON)
In contrast, sensor scheduling deals with intrasensor which include:

—Which sensor or combination d sensors can best perform the measurements required o a

observation task?
—How do sensor interact (e.g. radar interferingwith ECM)?
—Which sensor mode?

—What scan vdumes, beam scheduling and/or dwell-time?

In arder to determine how to accomplish alist of tasks based onsensor avail abili ty and

capabili ties, Zhang and Hintz [19] developed an ortline, dynamic, preamptive sensor scheduling

17
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algorithm call ed the On-line, Grealy, Urgency-driven Pre-emptive Scheduling Algorithm
(OGUP&A). Mclintyre and Hintz enhanced [20] the OGUP SA algarithm and demonstrated its use

in a sensor management simulation [21].

2.2 Requirements, Functions, Principles, and Problems

Thegoal of sensor management is to perform theright task at the right time on the right object
based onexternal performance measures or criteria. Thisis a complex task considering that the
sensors must work within a highly dynamic, norstationary environment and with finite sensor
capabili ties and avail abili ties. 1t isimportant to nde that the sensor manager is tryingto gptimize
the utili zation d a finite set of sensors with a finite computational capability in this dynamic, non
stationary environment to maximize the flow of information about the eavironment so that a
misson (goal) can be succesgully completed (achieved). Asaresult, the sensor manager must [8]

—Permit maximum flexibili ty for sensor resource all ocation

—Maintain misgon eff ectivenessin a degrading herdware environment

—Possessmaximum self monitoring capabili ty

—Exhibit minimum response time whil e servicing many near-simultaneous requests
whil e the primary functions of sensor management are:

—How accurately to measure?

—Which serviceto perform (e.g., search, track, fire cortrol, etc.)?

—From what physical location d the environment to dotain a measurement?

—When is the erliest usable time to begin the measurement?

—What is the latest usable completiontime for the measurement?



The general principles invaved in a sensor management system to eff ectively accomplish the
above functions include [9]:

—Plan to use all sensors (offensive & defensive)

—Value longterm gaels of survival and success nat just accuracy and identity

—Dynamic environment dictates adaptive methods

—Choacse a modding technique that is mathematically sound, comprehensive, and tractable

—Acoount for dissmil arities in sensor abili ty

—Eliminate redundant sensor all ocations and take advantage of sensor synergies

—Provide for emisgon controls (passve and low probabili ty of intercept modes)

—Achieveiterationrates in planning that kegp pace with all environment changes

—Shed load gracefully when sensor burden hits limits

—Consider adaptive-length planning haizonrs.
The problems that must be dealt with by a sensor management systems include [11]:

—Insufficient sensor resources

—Highy dyramic environment

—Varied sensor capabilities

—Varied sensor performances

—Randamly occurring sensor failures and

—Enemy interference and spodfing.

2.3 Sensor M anagement Tedniques
A variety of techniques have been proposed a applied to the area of sensor management.

Buede and Waltz [22] discuss ®veral isaues that have been proposed. They include heuristic or

19
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rule based systems with greedy search algorithms; optimization techniques that include decision

theory or utili ty theory, linear programming, and fuzzy set theory, and team theory. Musick and
Malhatra’ review recent appli cations which include artificial neural networks, decision theoretics,
information theory, and mathematical programming techniques including Linear, Nonlinear, and
Dynamic Programming. Several other authors[17], [23], [24], [25], [26], [27], [28] addressthe

use of Knowledge-based systems or expert systems.

One of thefirst articles to apply optimization techniques to sensor management is by Nash [29]
inwhich he uses linear programming to determine sensor-to-target assgnment for targets being
tracked. Nash uses the trace of the Kalman filter error covariance matrices as the costs
coefficients in the objective functions. Also, he uses the concept of pseudo-sensors to hande slack
sensor assgnments for the case when there are fewer targets then sensor tracking capability. Fung,
Horvitz, and Rothman [30] develop a decision theoretic sensor management architecture based on
Bayesian probabili ty theory and influence diagrams. Manyika and Durrant-Whyte [31] usea
decision theoretic approach to sensor management in decentralized data fusion while Gaskell and
Probert [32] develop a sensor management framework for mobil e robots also based ona decision
theoretic approach. Malhatra [14] discusses the temporal nature of sensor management and
describes the sequential decision processas a general Markov decision process Dynamic
Programmingis a methodfor solvinga Markov processexcept that it is a recursive algorithm that
determines minimum costs based onthefinal state and works backwards. Due to this requirement
to know, a priori, the optimal cost at each stage and the posshble combinatorial explosionin
enumerating each possble actions in a Dynamic Program, Malhatra proposes using Reinforcement

Learning as an approximate approach to Dynamic Programming while Washburn, et al. [33]
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present a sensor management approach based onDynamic Programming to predict the df ects of

future sensor management decisions.

Two gptimization approximation approaches applied to sensor management in the literature
include the use of fuzzy reasoning and artificial neural networks. Molina Ldpez, et al [34] present
a sensor management scheme that accompli shes eensor tasking using knawvledge-based reasoning
and fuzzy decisontheory. Zhondiang, Hong and Xuegin [35] use a back propagation reural
network to track maneuvering targets over a wide range of condtions. Their target tracking
scheme utili zes paralle Kalman filters and uses the neural network to improve position, velocity
and acoderation tracking precision. Browndl [36] applies neural networks for sensor management
and dagnastics in a production plant to increase energy efficiency whil e reducing waste and

pollution.

Several recent papers have bean investigating the application d Information Theory in arder to
develop a metric that a sensor management system can use to perform sensor-to-task trade-off s.
Information Theory, in the form of changes in entropy, has been used in a variety of applications.
The most widdy used measure of uncertainty is entropy but others include maximum entropy
probabili ty estimation, discrimination information functions, and mutual information functions.
Hintz and McVey [37] first proposed the use of an information theoretic measures in scheduling a
single sensor to track multipletargets. They describe situations where there is either insufficient
computation power to utili ze all of the avail able data or where there are fewer sensors than
processes to measure. Ther approach is to treat the sensors as constrained communications

channdls and compare them to Shannoris [38] measure of information capacity in a bandimited
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channd. Thebasis of their approach assumes that the channd is already being used to its
maximum capacity in a coding sense, and that more information about the states of multiple
processes can still be obtained by choasing that processto measure which will yied the greatest
decrease in its uncertainty. Usingthis analogy, they use the expected change in entropy (as
measured by a norm of the eror covariance matrix) as a measure of expected information gained
for determining which target state estimatesto update. This measureis used to maximize the
amount of information at each sampleinterval. Hintz [39] then expands the use of this measureto
the cueing d automatic target recogntion systems. Theresult of these two papersis that they
place search, track, and identification measure of information into a commensurate space.
Mclntyre and Hintz [40] use this entropy based information theoretic metric to perform search

versus track trade-offs in a smulation program.

Anather Information Theoretic approach presented in the literature uses discrimination gain
which is based onthe Kullback-Leibler discrimination information function [41]. Schmaedeke [42]
uses discrimination gain as the cost of sensor all ocationin Nash's Linear Program objective
functionto determine the sensor-to-target tasking. While he shows how this optimally schedules
sensors at each time increment, the Linear Program does nat run fast enough for real-time
applications. Kastdla[43], [44] and Schmaedeke and Kastella [45] apply discrimination gain to
determine the resolution level of a sensor for measurement to track association. Lastly,
discrimination gain is used by Kastella [46], [47] and Kastella and Musick [48] to determine where
to search for, and then track, targets based on dscrete detection cell s representing the probabili ty

of atarget being present in a cel first for static targets and later for moving targets.
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Table 2-1: General Sensor M anagement References

Focus of Article

Author

Discusses performance criteria

Defines snsor manager requirements and functions

Defines snsor management, its need, how to accomplishiit, and
benefits from its use

Describes snsor management rolein sensor fusion

Discusses £nsor management issues

Research at British Aerospace

JDL fusionmodd including sensor management as Leve 1V

Drug interdiction

Compares sveral management techniques to detect and classfy
targets

General discusson d sensor management

Drug Interdiction/Theater Surveill ance

Tactical Aircraft

Manufacturing Robot

Rothman and Bier [18]
Denton, et al. [10]
Popali [17]

Waltz and Llinas [49]
McBryan, et al. [22]
Uptonand Wallace [50]
White, et al. [5]]
Chongand Liggns[7]
Kastdla and Musick [48]

Musick and Malhatra[9]
Liggns and Bramson [52]
Marsh, et al. [53], [54]
Lynch and De Paso [55]

A goodsummary of data fusion (1) and sensor management (2) and the fundamental isaues

that they must addressis provided by Manyika and Durrant-Whyte [16]. The authors gate what

theissuesareand | quote

1. How can the diverse and sometimes confli cting information provided by sensors

in a multi-sensor system, be combined in a consistent and coherent manner and

the requisite states or perceptual information inferred?

2. How can such systems be optimally configured, utili sed and coordinated in arder

to provide, in the best possble manner, the required informationin dfiten

dyramic environments?

The techniques used in sensor management alongwith their applications are categorized and

presented in two tables. Table 2-1 lists sveral general discusson references with a description d

the main focus of the article while Table 2-2 presents a list of techniques and appli cations
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TECHNIQUE APPLICATION

Heuristic Tactical aircraft [56], [57]
Tactical aircraft [58]
Rohde and Jamerson [59]

Expert System Tactical aircraft [17], [23], [24]
Surveill ance networks [25]
Tactical navigation[26]
ESA Radar cortrol [27]

Multiple Experts Architecture Air defense [28]
Utility Theory Tactical aircraft [8]

ESA Radar scheduling [60]

Automatic Control Theory

Tactical aircraft [61]

Fuzzy Logc/Theory
Fuzzy Decision Trees
Fuzzy Reasoning

Tactical aircraft [17]
Tactical aircraft [34]

Cognition

Command, Control, Communications [62]

Dedsion Theoretic

Bayesian Bdlief Networks

Tactical aircraft [30]
Mobile robot [31]
Mobilerobot [32]

Probability Theory
Bayesian Approximation
Dempster-Shafer Evidence Theory

Robotic sensor estimation [63]
Mobile robot [64]

Stochastic Dynamic Programming
Reinforcement Learning

Tactical aircraft [33]
Tactical aircraft [14], [65]

Linear Programming

Sensor to target assgnment optimization [29], [42)]

Neural Networks

Production plant control [36]
Tracking maneuvering targets [35]

Genetic Algorithms

Scheduling for sensor management [66]

I nformation Theoretic
Shannonentropy

Shannonentropy
Shannonentropy
Shannonentropy
Shannonentropy
Shannonentropy

Military communications, MultiprocessCortrol,
Human supervisory control [37]

Sensor cueing [39]

Drug interdiction/Theater surveill ance [67]
Mobilerobot [16], [68]

Search versus Track trade-offs [21], [40]

Sensor management in a decentrali zed sensing
network [69], [70]

Kullback-Leibler/Discrimination Gain
Kullback-Leibler/Discrimination Gain
Kullback-Leibler/Discrimination Gain
Kullback-Leibler/Discrimination Gain

Sensor to target assgnment optimizatior*
Tactical aircraft [71]

Target detection and clasgfication [46], [47], [48]
Multitarget tracking [45]
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presented in the literature . The major drawback to most of the referencesin this survey is that
they tend to be point solutions with nomathematical framework for describing, predicting, and
comparing performance among \arious alternatives. This leads to the proposal of a new

mathematical modd in the next section.

2.4 Mathematical Model

Given any multisensor system, sensors make measurements of the environment. These
measurements are combined into doservations, and possbly combined with ather data to form
estimates. These estimates are then combined to produce information. It isthisinformationthat is
used alongwith performance measures to control sensor tasking. Whil e this description captures
the control and estimation processand provides a satisfactory explanation d the interaction
between sensor management and data fusion, there are other isaues and components in this process
that must be considered. The overridingisaueis the consideration d the temporal relationships
invaved in the process The other components include search, track, and identification techniques.
This leads to the need for a mathematically well-formed, computationally efficient, and reer-

optimal comprehensive sensor management system.

Theformulation d the comprehensive sensor system modd presented hereis inspired by
Malhatra' s general analytical modd [14] but is mathematical representationthat is directly
applicable to sensor management. The modd is $hown in Figure 2-3 complete with all of the
processes - search, track, identification, the fusion space, and the information space (which
contains ensor management). Theterm “space’ used in fusion and information spaceis based on

the definition d a space as defined by James and James [72] as “ Any set or accumulation d
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things, the members being call ed e ements or points and usually assumed to satisfy a set of
postulates of somekind” More specifically, they are metric spaces which is defined by James and
James as “A set T such that to each pair x,y of its points there is assciated a nonregative real
number call ed their distance which satisfies the condtions:
1) pxy =0, iff x=y
2) pxy) =p(y:X)
3) p(xy) +p(y.2 = p(x2
Thefunction p(x,y) is sid to beametric of T.”
The postulates of the detection space are nat covered here but the postulates of the information
spaceinclude
1) Entropy being a measure of uncertainty
2) Changeinentropy is equivalent to changein information
3) Total information available at a given timeis measurable
4) Total information availableif all processes wereto be observed at a giventimeis
measurable and provides an upper bound, and
5) Expected information gain for a given scheduled sensor task is measurable.
These postulates will be discussed in further detail i n the subsequent chapters. The fusion space,
which contains the data fusion process is $1own in more detail in Figure 2-4. An expanded
description d the information space comprised o the misson manager and sensor manager is

shown in Figure 2-5.

Thetarget modds shown in Figure 2-3, both detected and undetected, are represented with the

identical discrete event modd. For the undetected target case, the true modd is nat known to
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the sensor manager but the estimator target modd does influence target detection during the search
process Once atarget has been detected (but not yet identified) and is in track the same modd
which has been used in the search processis used in the tracking portion d Figure 2-3. In the case
of target tracking, one can decide between decentralized ar centralized estimation and fusion. Also
avariety of tracking methods such as innowations-based adaptive filtering, multiple mode

approach, and image-based drect maneuver estimation can be used [73].

As can be seen in Figure 2-5, the Misson Manager and the Sensor Manager work within the

Information Space. It is through the use of information measures and evaluations of goals that the
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Misson Manager computes information requests and the Sensor Manager converts these
information request to actual sensor measurements through the intermediate step of observations
requests to the informationinstantiator. Of particular interest is the role of the sensor manager in
that it subsumes two, esentially orthogoral tasks, information acquisition management and sensor

scheduling.

Previous approaches have treated the sensor management problem as a singe optimization task
with a performance measure as a weighted sum of diverse measures. Since the goals of the

information-to-observation instantiation are fundamentall y those of mapping the observation
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functions to indvidual sensors or pseudo-sensors, the two processes can be partitioned into two
distinct processes. These two processes can beindvidually locally optimized (possbly globally
suboptimal) based onseparate performance measures predicated onappropriate, yet necessarily
imperfect, models of the other processes which they subsume. That is, the information manager
instantiates requests for information into the specific type of observationwhich will satisfy that
requirement without regard to the particular sensor which will be used to perform the observation.
In this manner, it can maximize the flow of information from the world into the information space
representation d the world without investigating all options. That is, it makes an gptimal decision
based onan imperfect and incomplete modd of the actual sensors, but in dang so, it reduces the

optimizationto ore which is manageable and calculable in real time.

The sensor scheduler, on the other hand, does nat need to knowv how the measurements are
gaing to satisfy some higher requirement for information. It only needs to concern itsdf with the
optimal packing d these measurements into the time all otted as well as distributing the
measurement tasks amongthe avail able sensors while simultaneously keeping the load balanced

and asauring that all sensors are utili zed to their maximum capabili ty.

For example, the Information Instantiator does nat care whether an ESM, FLIR, or RADAR is
used to dbtain a bearingthat it needs to improve the estimate of atarget’s date. It isony
concerned with the fact that it needs an doservation d a particular type and accuracy leve with
which to compute the information to satisfy a higher level request. That is, the Information
Instantiator only needs to have some bound onthe information rate which can be achieved with the

sensor suite, without regard for the specific sensors. Intheideal case, thereis some feadback from
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the sensor scheduler to the Information Instantiator reflecting its real-time capabili ties as they
degrade or additional sensors come ontline. Likewise, the sensor scheduler is nat concerned with
the reason for the observations, but is only concerned with the resources that it has available to

fulfill the observation requests.

Anather way to look at thisis that the information manager does nat perform micro-
management, but assumes that within some bounds, the sensor scheduler can satisfy most of its
measurement neads. Thosethat it can't satisfy are returned to be reprioritized o discarded. It
further assumes that the information manager has approximate modes of the sensors from which it
can dbtain measurements, but has no particular interest in which specific sensor the sensor

scheduler uses.

2.5 Applying Partially Ordered Setsto Sensor M anagement

Difficulty arises when trying to prioritize or determine the weight for each management
functionin arder to perform the requisite trade-offs. The use of POSET s and lattices all ows one to
superimpose a method d apportioning weights to the misson gals that a sensor management
system supports. This methodis unique to this research and represents a quantum step forward for

the integration d “soft” goals with hard limitations.

2.5.1 Partially Ordered Setsand L attices Theory
Thetheory of orderings or ordering relations plays an important role throughaut mathematics
[74] andit is this methodthat will be df ectively applied to the development of a comprehensive

sensor management system. As a preiminary, several definitions are useful. When talking d
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ordering relations, it’s convenient to read the symbol “<” as“isincluded in” rather than the more
usual “is numerically lessthan”. A partially ordered set or POSET isdefined as“...a set which

hasardation x<y, or ‘x precedes y', defined for some members or x andy satisfying the
condtions: (1) If x<y then y <x isfalseandx andy are nat the same dement. (2) If x<y
and y <z, the x<z [72].” More specifically, a POSET is based onan ardered pair (X,<),

where X isa set and< isan gperation a dyadic inclusionrdation over X that must satisfy the

threerequirements of reflexivity, asymmetry, and transitivity [74], [75], [76]. These properties are

defined as:
- Foral xOX, x<x (Reflexive)
- Foral x,yOX, ifx<yandy<x, then x=y (Asymmetric)
- Foral x,y,zOX, ifx<yandy<z then x<z (Transitive)

If al of the orderings are nat specified, then the ordering reationship is called a partial ordering. If
the POSET is further restricted such that for any two eements in the POSET have both a greatest
lower bound (glb) and a least upper bound (lub), then the dements form a lattice. Usually a lattice
represents the relationship amongthe dements of aset. A common example of thisis the Hasse

diagram.

Two examples are presented here to provide an intuitive understandng d POSETs and lattices
for those unfamili ar with the concept. While POSET s occur throughaut mathematics and are used
extensively for machine minimizationin Sequential Machine Theory, most examples are based on
algebras or sets. Two examples shown below use a convenient ill ustration d a POSET called the

order diagram or Hass diagram. Thefirst exampleis an algebraic one



Table 2-3: Integer Inclusion
Ordering Relations

Element of X | “integer divisors of”

100 100 50, 25, 20, 10,
54,21

50 50, 25, 10,5,2, 1

25 2551

20 20,10,5,4,2,1

10 10,5,2,1

5 51

4 4,2, 1

2 2,1

1 1

100

50 20

Figure 2-6 LatticeFor Integer Division Ordering
Relation

based ontheinclusionreationship “is an integer divisor of.” The relationship is defined as

R x <y with < defined as integer divisor andtheset X ={1, 2, 4, 5, 10, 20, 25, 50, 10¢t. The

resultinginclusion reationship for X is $hown in Table 2-3 and the accompanying Hass diagram

(or lattice) of the POSET is shown in Figure 2-6. The secondexampleis based onthe relationship

Rx <y where<isdefined as“is a subset of” andthe set is X ={ { abcdef}, {{ ab} {€f}},

{{ ad} { bcef}} , {ab}, {ef}, {ab,c,def}}. Thelatticefor this POSET based onthe subset

orderingrelationis $hownin Figure 2-7.

2.5.2 Computing Weights Using POSETs

As discussd earlier, expected information gained has turned aut to be a necessary but nat

sufficient condtion to perform the necessary task trade-off s required for complete sensor
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{abcdef}

{ab} {ef} {ad} {bcef}

{ef}

{ab}

{a,b,c,d,e,f}

Figure 2-7: Latticeof Subset Ordering Relation

management. That is, if one uses only information gained as a measure with which to perform
sensor management trade-offs, it does nat take into account the multiplicity of competing misson
gaals which must also be considered. By defining an ardering relation amongthe misson gals,
the theory of order relations, or more specifically partially ordered sets, can be used to construct a
set of goalsinto alattice and superimpose on this a method d apportioning relative values among
thegaals. Thevalues can be determined by starting with the top node of a POSET having a weight
of 1. Intheabsence of any owerriding preferences such as changng misson regquirements, the
value of agaal isuniformly distributed amongthe arcs leaving that node. The value for each node
is then computed by summing the values of all theincomingarcs. An example of a lattice with
uniformly apportioned values and 13 nodes is shown in Figure 2-8a. The bottom two nodes, which

represent actions which can be performed, represent the lowest level goals and their values are 0.39
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"soft" goals

\ 4
real, measurable goals

0.39 0.61 0.53 0.47
a) Uniformly apportioned values b) User preference apportioned values

Figure 2-8: Latticewith Values Apportioned Uniformly Versus User Preference

and 0.61, respectively. These values can then be used for deciding haw frequently to perform

which actions or what the rlative priorities of the indvidual actions ould be.

In the case of changing user preferences, the values can be distributed amongthe outgaing arcs
according to these preferences rather than the previous uniform distribution. The calculations of
therevised values of the lower nodes then is graightforward as described above.

For example, if the weights of the threenodes in the secondlayer are changed to 0.7, 0.2 and 0.1,
respectively, the weight of the bottom two nodks change to 0.53 and 0.47, respectively, as siownin

Figure 2-8b.
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2.5.3 Two Real-World Goal-L attices

While most sensor management research has been ariented toward mili tary appli cations, the
use of POSETs and lattices can easily be applied to both civili an and mili tary situations to perform
and qotimize trade-off s among sensor management tasks. Thefirst step in using POSETs is to
identify the goals of any gven misson. The secondstep isto define the ordering relation which
allows ore to build the POSET and associated lattice. The last step is to assgn and compute the

values for the gaals that the sensor manager must trade-off.

A useful civilian example where POSET s and lattices can be applied to is the National
Aeronautics and Space Administration (NASA) misson. The NASA’s Strategic Plan (dated May
1994 identifies threemajor misson areas -- scientific research, space eploration, and techndogy
development and transfer. More specifically, NASA [77] lists them as:

— “To explore, use and enable the development of space for human enterprise”’

— “Advance and communicate scientific knowledge and understanding d the Earth, the solar

system, and the universe, and use the environment of space for research”

— “Research, develop, verify, and transfer advanced aeronautics, space, and related

techndoges’
Several sub-goals, both from NASA and added by the author, have been identified alongwith how
they relate to the above threemisson areas. A completelist of these NASA goalsisincluded in

Appendx 1.

An example of a mili tary applicationis the multiple United States Air Force's (USAF)

missons. Several misson areas are defined in the Joint Chief of Staff Publications (JCS Rub 1
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and Pub 3 and Air Force doctrinal manuals -- AFM 1-1, Basic Aerospace Doctrine of the United
Sates Air Forceand AFM 1-10, Combat Suppot Doctrine (currently being rewritten as Air Force
Doctrine Documents) -- that define and explain Air Force doctrine. These puldications and
manuals outline six separate misson areas which include Off ensive Counterair (OCA), Defensive
Counterair (DCA), Air Interdiction (Al), Battlefield Air Interdiction (BAI), Close Air Support
(CAS), and Suppresson d Enemy Air Defenses (SEAD). Specific goals within each misson area
arefurther described in USAF's Air Command and Staff Coll ege course material [78]. These

goals are presented in Appendx 2.

2.5.4 Ordering the Goals

Once the goals have been identified (the set, G), asin these 2 examples, the next step isto
define an ardering relation (<) onthem which allows one to build a POSET (G, <). The ordering
relation used in this research is a precedence ordering that simply states that a subordinate goal “is
required to accomplish” in arder for a goal to be satisfied. Using this ordering relation, a lattice of
the POSET based onthe NASA misgon statement and galsis siown in Figure 2-9 (Note: nat all
of the subgaels could be identified so the lattice is incomplete leading to the unusual structure of
thelattice). Thelower portion d the diagram comprises goals for an asumed, but likdy, fully
autonamous, unmanned Mars explorer with significantly more capabili ties than the recently used
Sojourner Marsrover. The unordered subgoals of Space Exploration, Scientific Research, and
Techndogy and Transfer are equally weighted with a value of 1/3. The bottom four goals which
are real, measurable actions in Figure 2-9 represent the cortributing value of the goals of the Mars

explorer to the NASA misson. These goals andtheir weights are;



38

¢¢’'0 LT'0 S00 SO0
o

G¢'o G¢'0

9

00 €00
LT°0

LT°0

€e0 yoleasay )

21NUBIS €e0

uolnelojdx3
aoedsg

Jajsuel] pue
luawdolanaq ABojouyosa]

Figure 2-9: NASA Misgon Lattice Details of individual goals are in Appendix 1.
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to analyze the atmosphere, 0.05

to analyze sample, 0.05

to search for obstacles, 0.17

to track obstacles, 0.22

From this, one can seethat tracking dostacles contributes more to the NASA missonthan
analyzing the atmosphere. Therefore, if a decision must be made onwhether to do ore or the other,
tracking should be dorefirst with greater frequency or with a higher rate of occurrence. Also, if

there are multiple opportunities then tracking should be dorein theratio o 0.22/05.

The lattice for the POSET based onthe USAF gaalsis shown in Figure 2-10. Thesix misson
aress and their associated weights are annaated in thefigure. The bottom threegaoals and their
weights are

— totrack detected targets, 0.21

— toid oetected targets, 0.22

— tosearchfor targets, 0.57

As previously stated, one of the major advantages of using POSETs with the superimposed
value apportionment is that it is a new methodthat results in a quantitative, and traceable measure
of importance that a sensor manager can use to perform and @timize trade-off amongsearch,
track, and identify tasks. Ancther advantageis that the weights can vary as a function d time or
state. During any gven misson, different goals are preferred over others and these preferences can
change during dff erent phases of a particular misgonin response to a norstationary environment.

These preference can be set a priori and/or in real-time.



Figure 2-10: USAF Misgon Lattice Details of individual goals are listed in Appendix 2.
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Preplanning can establi sh weights for specific phases of amisson. Inthereal-time case, a
supervisor — either human, automated (i.e. the Misson Manager presented earlier), or both — can
change the preferences during a misson based onchanges in information produced by data fusion.
Theuse of information theory and adering rdations are demonstrated in a simulation modd with

the results of the simulation runs presented and dscussed in Chapter 6.

In summary, the sensor manager is concerned with the detail ed scheduling d measurements by
the various heterogeneous snsors. 1t does nat concern itsdf with the particular reasonfor the
measurement, but only with the fact that it has had a request to dotain a measurement of a target.
Thell determines what functions are required based onthe type of request passed to it from the
misson manager and the temporal and acauracy constraints of that request. These functions are
then converted into tasks and passed alongwith task deadlines and priorities to the sensor
scheduler. The sensor scheduler then gptimizes the scheduling d tasks to specific sensors. The
Sensor Scheduler (OGUP&A) is discussed in more detail ed in Chapter 5. Lastly, the termindogy
used in this research is that the Misson Manager isaues information requests, the Information

Instantiator isues observation functions, and the sensor scheduler issues sensor actions.

255 Goal LatticeProperties

Whilean initial impresson d the goal latticeis that it is nathing more than a graphical beli ef
modd, this perceptionisincorrect. Even though both methods dhare several similarities, the major
differenceisin what the methods represent. Graphical belief moddling represents uncertainty by
providing a methodto build and manipulate risk assessment modds [79]. This uncertainty is

represented with ether probabili ties (Bayesian approach) or belief functions (Dempster-Shafer
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Level
0
C11 1
>
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Figure 2-11: Generalized Form of a Goal L attice

theory of evidence). The gaal |attice was developed as a mathematical methodto build and
represent user preferences and manipulate them both a priori, and more importantly, andin real-
timeduringamisdgon. The user preferences change duringa misson as afunction d time (the

phase of a misson) or operator inpuit.

A lattice, or Has= diagram, is used to capture the structure of the sensor management
problem. Specifically it uses a mathematical formali zation to specify which gcals are directly
related. Whileit provides an intuitive description d the problem, it also demonstrates or provides

information on haev the goal values areinfluenced when aher goal values change. The gaal lattice
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can be used to translate a complex problem into an easily understood representation and establi shes

amechanism for dicitingand daumenting an expert’s or user’s preferences.

As dated in a Section 2.5.2, the value for each noce (goal) is computed by summing the values
of al theincomingarcs. Using a generalized form of a godl lattice as sownin Figure 2-11, a
lattice can be described as having | levels with level 0 beingthetop leve, I-1 midde leves, and
levd | being the bottom level (the leve cortaining the goals whase weights we are attempting to
compute). A system of equations can be defined to compute the weights of a particular noce at
leve i +1. It isthe sum of the products of theincoming arc weight multiplied by the value of the
nock at level i for all nodes that are a parent noce. This processcontinues until the bottom nodes,

levd | nodes, have been defined. For example, the value of thefirst noce at leve 2, ¢4, is

Co1 = 01120y + 012,01, +-+ Qi pa Lo R (21)
where the subscripts of ¢ arethe levd and noa within the level (with R nodssin that level). The
variable g is the user defined arc weights and the subscripts are the level number of the parent
nodg, the noce number within that level and the node number in the next level. Thesum of all the
weights coming from a singe noce is equal to the value of the node from which they came.

k -
G, =Y 0,; whereiskthenumber of arcsleasingc, (2-2)
i

These weights need na be uniformly distributed. Once all of the equations have been defined, the
weights of the bottom nodes can be recursively solved such that the weights can be expressed as

the sum of valuefor all of the possble paths from the top noce to the bottom nock.
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The processof solving the system of equations can be extremely tedious and a simpler method
isneaded. Fortunately, the computation d the goal lattice lends itself to a Linear Algebraic
interpretation, [80] and[81], andiseasier to visualize. Each layer i can bethought of asa Ri-
dimension vector being linear transformed into a R;.;-dimension vector. A matrix, I, that contains
the user specified weights for the arcs leaving the nodes at level i is used to compute the values of
thenodes at levd i+1. T can be considered a transformation matrix that transforms the Ri-

dimension wector C; to Ri.;-dimension vector Ci,; [80]. In matrix form this becomes

G =riCy (2:3)
where
C :[Ci’1 C, - CiRi]T avector of R; nock values for level i
(011 Q21 o Oira E
r = P2 Q22 - Oir2 O
T : I O
O O
Biira Y92ra 7 GirRaO

= the trangition matrix from level i to level i +1 consisting d the
arc coefficients. The subscripts of g are
1) from level number i,
2) node number from withinlevel i, and
3) node number within next level

Ci+1:[Ci+1’1 Ciip CHLRM]T the vedor of R;,; nodes for level i +1

The sum of the columns of I is the sum of the arcs leavinga noce at level i and by the
definition d cin (2-2) must sumto 1. If thereareatotal of R, nodssinleve i and Ri.; nodssin
thelevd i+1, then T will bea R; ., by R matrix. A transformation matrix can be defined for all of
thelevesfrom 1 tol. Oncethis has been acoomplished, each equation d theformin ( 2-3) can be

recursively expanded such as from C; and Cs



C,=r.C
C;=T,GC,
=T1,IC
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(2-4)

TheresultisthatI",I"; isthe product of two linear transformation matrices which transforms the

vector C; into C3. Thisnew matrix " =, isitsdf alinear transformation matrix, [81] and

retains the desirable property that the sum of the columns equal 1. Continuing the processfrom C,

to C, result in the value vector at level | being

c =ro,.o...a,C

0, O Oc,, C
0. O 0. C
2 []= 2
Es o= rl_lmrl_zm---mrlgS =
0 O 0 C
fhr B FrriE

which is the linear transformation from C; to C,.

(2-5)

A numerical example based onFigure 2-12 is presented to demonstrate the above process

First, the systems of equations are developed and they are

Cy, =055
¢, =015
c ;=02

¢, =006
C,s =004

C,, =05¢c,; +0.6¢c,, +0.7¢c ,
2 =04c, +1c,3+03¢;,
C3 =050, +1c5

C3, =0.75c,, +0.38¢,,

c;, =025, +062c,, +1c, 4



Ca3

Ca1 Cs2

Figure 2-12: Goal L attice Properties Example

Then solving for ¢c3; and ¢, yieds

Cy; =0.75(05¢,, +06c;, +07c,,)+038(04c,, +1c, 5 +03c, )
=075(05) ¢, +075(06) ¢, , +0.75(0.7) ¢, , +038(04) c,,
+038(1) c,; +038(03) ¢,
= 02062+ 00675+ 00315+ 00228+ 0.076+ 0.0068
= 04109

Gy, =025(05c¢,; +06c,, +07c, ,)+062(04c, , +1c, 5 +03c, ,)
+1(05c;, +1c,5)
=025(05) c,, +025(06) ¢,, +025(07) c, , +062(04) c,,
+062(1) ¢, 5 +062(03) ¢, 4 +1(05) ¢y +1 (1 ¢
00688+ 0.0225+ 00105+ 00372+ 0124+ 0.0112+ 0275+ 004
05891

46
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Thusthere are 6 paths from the top nock to the bottom nock c;; and are listed below alongwith

their associated path value
Co - C11 — C21 — C31(0.2062;
Co — Ci2 — Co1 —C31(0.0679,
Co — Ci4 — Co1 —C31(0.0319,
Co — Ci2 — Cyp —C31(0.0228,
Co — C13 —» C22 — Cz1 (00076, aNd
Co — Cra — C22 —C31(0.0069

From the top nock to the other bottom node, c;, there are 8 paths. The paths alongwith their

asciated weight are

Co - Cua1
Co - Cp2
Co - Cua
Co - Cp2
Co - Cy3
Co - Cua
Co - Cua1

Co — Ci5

Co1

— C32(0.0689»

— C32(0.0229,

- C32(0.0109:

— C32(00372»

- C32(0.124»

— C32(00112»

— C32 (0279, and

- C3,2(0.04);

The computational complexity of determining the weights of the bottoms nodes can be seen to be

polynomial sincethey are just the sum of the product of the segment weights for each path.

Using the linear transformation representation described above, the leve 1 vector is

C1:[(31,1 Gz Gs G C1,5]T (2-6)
:[0.05 015 02 006 o.o4]T

and the 2 transformation matrices from level 1 toleve 2 (I'y) andlevel 2to levd 3 (I',) are
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05 06 0 07 OC (2-7)
n=® 04 1 03 O
M5 0 00 1f

- _[075 038 0O
2" H25 062 1H

Thetransformation matrices fromlevel 1 tolevel 3 (I'; OIM,) isgiven by
r=r,m, (2-8)

0375 0602 038 0639 0OC

~ 0625 0398 062 0361 1F

Now using ( 2-6 ) and( 2-8 ), C3 can be computed as foll ows

C,=Tl[C, (2-9)
(0550

0375 0602 038 0639 0O his:
=0 ' I g0002 C

“ 625 0398 062 0361 1
? 5 Boes

H.04F
(041097
" Hosso

As discussd previoudly, the sum of the columnsfor I'; sumto 1 asdoesT. Itisinterestingto
nate that the dements of I” take on special significance. Looking at the 1% column o T, thisis the
proportion d the value of nock ¢, ; that goes to support the bottom gaoals ¢33 and ¢z, -- 0.375and
0.625respectivdy. Column 2 is the proportion d the value of nock ¢, , that supports the bottom
gaals and so onfor therest of the columns. The dements of each row of ' also have significance -
namely that they are the portion d the level 1 nodes that support the bottom noce associated with

that row.



49

2551 Goal Lattice Sensitivity

L attices can be described based ontheir visual appearance - that is whether or nat they are
symmetrical. This ymmetry or asymmetry can then be used to study the sensitivity of the weights
of the goal nodes (the bottom nodes in a goal lattice) to changes in user value preferences of the
arcs leaving Hgher level nodes. This sensitivity can be divided into two categories - value
sensitivity and structural sensitivity. Value sensitivity deals with hawv sensitive the goal nodes are
to changes in user arc value preferences whil e structural sensitivity is concerned with hav sensitive

the goal nodks are to the asymmetry of the goal lattice.

255.1.1 Value Sensitivity

In arder to demonstrate value sensitivity, a 3 layer symmetric lattice with two bottom nodesis
used. Thetop most goal is divided equally amongn nodes in the midde levd - each arc has weight
I/n. Oneof the arc weights to the n nodes is “ perturbed” by the differential value d whil e the other
n-1 arcs are uniformly decreased by &/ (n-1). Thegoal latticeis symmetrical in structure by
mirroring it about the vertical axis. The measure of asymmetry is“ p”, the number of goals from
the midde layer which contribute to each o the 2 bottom nmost goals (A andB). This gaal lattice

is depicted in Figure 2-13.

Now using the matrix natation described above, the vector of the values for the nodesin level 1

isacolumn vector of sizen andis given by



Figure 2-13: Goal Latticefor Sensitivity Example
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and the value of the lowest nodes, A and B, can be computed as

C,=Irc,
N [
mgz gl(p—mxl) i 0.5(mx1) i O(n—pxl) E
U BS(n—pxl) i0.5(mx1) i 1(p—mx1)H

where

) ma—lx 1

C
E

50

(2-10)

(2-11)
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n is the number of nodes at the midd e level
p is the number of nodes from the midde level which contribute to each
of the bottom nodes

mis the number of nodes at the midd e level shared by each of the bottom
nockes

Expanding into separate equations for A and B yidds

A=fogs (p-m-y - Tiposmip -2
B:o.an%l—ni_l +(p—m)%1_ni_l
ThenA-Bis
A-8=eofl (p-m-) - 2oL - 01 (212)
_o_an%l—ni_l —(p—m)%l—ni_l
Gk,

:5+i

n-1

Taking the partial of A - B with respect to 0 yields

AA-B) _ d[Ond (2-13)
35 _%@nflg
_n

n-1

Taking the partial with respect to n yieds

d(Adr: B) _ % %Q (2-14)
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(-1

The sensitivity of the value of the bottom nodes to changes or * perturbations’ of the values at
the top of the lattice can be described by naticingthat asd — 0,A-B=0andasn - o ,A-B=
0. This smply shows that the smaller the “ perturbation” the smaller the df ect on the bottom gaals.

Also the more nodks at the midde leve, the smaller the dfect of the “ perturbation”.

255.1.2 Structural Sensitivity

This processcan be repeated for an asymmetric goal lattice in arder to examine the sensitivity
of the values of the bottom nodes to changes in the structural asymmetry of the goal lattice. The
same goal lattice in Figure 2-13 can be used except there is no perturbation and p arcs cortribute
to bottom node A and q arcs cortribute to bottom node B with p # g and marcs in common. The
value of A and B can be computed as

C,=rc, (2-15)

A P O
mgz %(p—mx 1) i O.5(mx 1) O(n—px 1) DD]-D

U Ba(n—qxl) ids(mxl) ! 1(Q‘mX1)HE;HX1

Expanding separately for A and B yields

(p—m)£+05m1
n n

A

(p—O.Srn)%

B:o.sml+(q—m)1
n n

=(q —O.5m)%



Then solvingfor A - B is

A-B:(p—O.Sm)%—(q—O.Sm)%
:(p—q)%

Taking the partial with respect to p - q yields

JA-B)_1
d(p-a) n
Taking the partial with respect to n yieds
JA-B) _ 11
d,] (p q) n2
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(2-16)

(2-17)

(2-18)

The sensitivity of the value of the bottom nodes to the amount of asymmetry, as measured by p

- ¢, can bedescribedas(p-q) - O,A-B=0andasn - o, A-B=0. This shows that the

more symmetric the lattice, as measured by p - g, the smaller the dfect on the bottom goals. Also

the more nodes at the midde leved, the smaller the dfect of the asymmetry.

Whil e specific examples were used here to examine goal lattice sensitivity, this can be

expanded to more general cases. That is, in general, one can measure sensitivity by examining the

Jacobian o the transformation matrix.



Chapter 3
Information Theory

3.1 Background

The concept of entropy was first introduced by R. Clausiusin 1865when he was gudying heat
cyclesin phenomendogcal thermodyramics. Since then the term “entropy” has been appropriated
by many fields including statistical mechanics (L. Boltzmannin 1872 communications theory (C.
L. Shannonin 1948, probabili ty theory, logc linguistics, abstract analysis and rumber theory
[82]. Itis Shannoris measure of information that is of practical interest to sensor management and
sensor scheduling. As Skagerstam [82] states, Shannonintroduced the concept of information
theoretic entropy and information based onthe concept of a discrete information source as a
discrete randam process Shannon[38] defined the entropy information measure as

n 3-1
= —K_le, log p; (31)

whereK is any positive constant and p; as the probabili ty of thei™ outcome of the randam event. It
is the quantities of theformin ( 3-1) that Shannonstates “...play a central role in information
theory as measures of information, chaice, and uncertainty. Theform of H will berecogrized as

that of entropy as defined in certain formulations of statistical mechanics... .”

54
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Then using the information entropy defined in ( 3-1 ), Shannon @fined the information, I, as the

difference of the entropy for two gven probabili ty distributions for the randam event.

Ina C3l context, the use of sensorsisto decrease our uncertai nty about the states of the
multiplicity of targets which populate our world. Stated anather way, sensors are used to reduce
the uncertainty about targets -- such as thelocation, identification, or intent of all targetsin a given
area of responsibility, essentially our “world.” However, the processof sensing the environment is
constrained in that sensors canna observe all parts of the operating environment simultaneously
and still have sufficient gain and sdlectivity to measure individual targets effectively. A trade-off
must be made in searching ore area & the expense of others. Sensors have a limited field of view,
and by the time a sensor revisits a previously observed area anew target may have appeared ar a
previously detected target may have maneuvered into a different location. Thelatter will require
the sensor to expend limited resources in arder to search a larger areain an attempt to reacquire the
target. Thisisall at the expense of increasing the uncertainty of other search areas, possbly losing
track of previously detected targets, or identifying previously detected targets. This gatial-
temporal mutual exclusivity of sensors can be considered as a constrained communications channel

[61].

A basic assumptionis that without sensing the world, its entropy or uncertainty about the
world is cortinually increasing. If allowed to continue without sensing, the world becomes a
uniformly distributed space of targets. Because diff erent targets have diff erent dynamics and nose

driven processs, thereis a differential uncertainty increase amongthem. It is the purpose of the
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sensor management system to discover that diff erential uncertainty and exploit it to minimize our

global uncertainty about the world.

From an information-theoretic viewpoint, the purpose of a sensor isto interact with the
operating environment in arder to reduce the uncertainty about it. By detecting, localizing, and
identifying a target or determining that a target is nat present results in an information ggin (as
measured by a reductionin uncertainty). Informationis also gained when a sensor is used to
increase the accuracy of the kinematic state of a target that is already being tracked. These

information gains or reduction in uncertainty can be broken into 3 components. They are[61]:
~ uncertainty of thelocation o undetected targets, p" (x,y)
— uncertainty with the estimate of a target’s kinematic state vector, X,
— uncertainty about target identity (from identifying atarget as friend a foeto determining

target clasdgfication to identify a specific target tail or hull number), klf

Despite the apparent applicabili ty of this information theoretic approach, very few references
pertaining to the use of Information Theory for the managing and scheduling d sensors can be

foundintheliterature. They can be categarized into the following areas:

Kalman filtering

Target detection/ recogrition

Data fusion

Sensor management
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3.2 Information Theory Applied to Kalman Filtering

Several papers apply Information-Theoretic (IT) concepts to general estimation problems. In
their paper, Kalata and Priemer [83] derive a minimal-error entropy estimator for linear systems.
They base their derivations on mutual information between a randam processx resolved by the
observations z. The authars $ow that minimizing the eror entropy is equivalent to minimizing the
mutual information between the prediction error and the observation. By using the entropy error,
the authors derive the optimal discrete linear predictor, filter, and smocther invdving addtive
Gausdan nasedisturbances. Theresult isthat the optimal entropy error filtering solutionis
identical to the optimal means gquare eror (discrete Kalman filter) filtering solution shown in Gelb
[84]. Addtionally, they show that for nonGaussan cases, the Kalman filter is a minimax entropy

error linear filter.

Tomita, et al. [85], apply information theory to orly filtering problems. Both dscrete time and
continuous timefilters are presented unli ke the previous paper that only looked at discretetime
Kaman filters. Specifically, the authors gatethat ... the necessary and sufficient condtion for
maximizing the mutual information between a state and the estimate is to minimize the entropy of
the estimation error.” The authors then proceed to construct the discrete and cortinuous time
Kalman filters using the relationship between maximum mutual information and minimum entropy
error. Tomita, et al. [86], then extend their information theory approach to derive the optimal
filter for a cortinuous time norinear system. The conclusion the authors makeisthat “... mutual
information plays the central role for the estimation problems as well as the codng problems

discus=d by Shannon[6].”
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3.3 Information Theory Applied to Target Detedion / Recognition

Hoballah and Varshney [87] look at the detection problem using an entropy based cost
function in determining the optimum detection. They show that statistical detection can be viewed
as maximizing the amount of information transferred through a channd. The authors also show
the relationship of mutual information and receiver operating characteristics (Pp and Pra). They
also extend the derivation d the optimum threshdd and fusion rules based onmutual information

for distributed detection situations.

Clark, et al. [88], [89], [90], develop and apply an information theoretic measure to evaluate
the performance of forward-looking infrared (FLIR) sensors used for target detectionin automatic
target recogrition (ATR) systems. The FLIR systems under investigation by the authors are used
to detect and recognize mili tary vehicles against alow clutter background. With aFLIR, one
generally receives a signal return that is expressed in terms of the pixd intensities. The pixd
intensities are then used to determine the probabili ty density functions (pdf) of the pixels within a
target region and in a background region. The authors use these pdfs in developing their
“Information Theory Image Measures” (IT IM) based onthe relative entropy of the two
distributions (seeSodfi [91] for adiscusson d reative entropy). In contrast to this approach, the
current evaluation processis based on luman perception. ThelT IM was compared to aher
measure such as target to background cortrast and target versus background entropy based on gay
levels of pixel images. The authors conclude that the“... Information Theoretic image measure
was found more powerful than Contrast and Entropy for separability of different image regions,

resulting in much lower false alarm probabili ty.”
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Hintz [39] also applies an information measure to automatic target recogrition (ATR) -
specifically when the ATR is used to aid a trained doserver to perform target recogrition. Thetype
of system being considered is call ed a cuer -- measurements of one sensor are used to refine and
aim anather sensor. The approach used by the author is to measure information in terms of
subimages that have meaning to the observer and nd the entire scene as was used by Clark, et al.
Hintz interprets entropy as a measure of uncertainty and thus measures information as the change

in entropy with the sign determiningif informationwas gained o lost. Theform he usesis:

I' = Hpefore observation ~ Hater observation (32)
where he defines H as entropy (-p In p). The author goes onto define several different types of
cuer information and presents sveral numerical examples to demonstrate the quantities of

information avail able for each type.

A final paper by Turner and Bridgewater [92] discusses the use of an information theoretic
approach to survelll ance of large areas and the detection d targets. Theregoal isto maximizethe
amount of information from each interrogation d the search space by a space-based eectronically
agileradar. By usinginformation theory, they modfy the classcal binomial sequential detection.
Their processis used to adapt the detection threshdd in arder to extract the maximum amount of
information at each step in the detection process By dividing the search area into cdls and
establishing a criteria of maximizing the information gain o uncertainty reduction with each dwell

of the radar, they determine which cell to visit next.
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3.4 Information Theory Applied to Data Fusion

Either a Bayesian a Dempster-Shafer probabili stic models can be used to addressdata fusion
and data management. Using a Bayesian approach, Manyika and Durrant-Whyte [68] compute the
expected utility of takingan action. They demonstrate the use of Fisher information and entropy as

ameasure of information and use this information metric as the expected utility of data fusion.

Greenway, et al. [93] investigate communications management within a decentralized
multisensor system where a number of distributed nodes each make local decisions onwhether to
track or identify atarget or to communicate target informationto ather nodes. The authors
compare two comimunications management algorithms constrained by a maximum transmisson
bandwidth and avail able bandwidth. The two algarithms are a round robin approach and an

information theoretic approach based onentropy considerations.

Oxenham, et al. [94], addressmeasures of information for multi-level datafusion. The
authors date that the purpose of data fusionis to increase the information content by fusing
multiple sources of uncertain information and that a reduction in uncertainty eguates to information
measured by Hartley information and Shannonentropy. They use afuzzy set or fuzzy theory
approach to categorize uncertainty into ambiguity and vaguenessand then further refine and define
several types of uncertainty. They then dverge and dscussa measure of information with respect
to Dempster-Shafer theory of evidential reasoning and to fuzzy reasoning. While they define
several types of uncertainty and provide examples of how to measure them, it isnat clear how it is

applied to data fusion.
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3.5 Information Theory Applied to Sensor M anagement and Scheduling

Barker [95] investigated the application d information to search theory. He presents and
proves a theorem that states that “ ...subject to a constraint ontotal search effort, the allocation o
search effort that the maximizes the probability of detection also maximizes the entropy of the

posterior search dstribution.”

Hintz and McVey [37] provide thefirst article on applying a measure of information to sensor
management. Their assumptionis that a communication channd is running at its capacity andis
unableto hande all of theinformation that is avail able -- it is running at its Shannonlimit.
Extending this concept further, they describe a measurement constrained channd -- that is, several
targets are being tracked with the use of a separate Kalman filter for each target. Insufficient
sensor resources are avail able and the avail able sensors must be scheduled to maintain a specified
levd of track accuracy. Based onthis description, they develop a measure of information using
the change of entropy in arder to determine how to schedule sensors and processthe data. Entropy
at a given timeis defined as the square roat of the norm of the conformal error covariance matrix
maintained by the Kalman filter. By computing the changein entropy at each measurement
opportunity, they develop a methodto sequence measurement through a “constrained” channel. By
using entropy as a measure of information, they are able to use this methodto maximize the

amount of information flow at each avail able sample interval.

Based onthe previous work of Hintz and McVey, Schmaedeke [42] uses information gain as
the cost function d a Linear Program to gptimize the all ocation d multiple sensor to track

multiple targets at the next time step. As with Hintz and McVey's approach, Schmaedeke uses
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the expected information gain based onextrapolating the Kalman filter error covariance and then

calculating the updated covariance matrix after a update.

Kastdla[46],[47] proposes ancther information theoretic measure which heterms as
“discrimination gain” whichis also know as Kullback-L eibler information. He uses the expected
discrimination gain to determine the optimal order for searching a set of discrete detection cdlsin

order to detect and track multiple targets.

3.6 Proposed Information Measures

As dated earlier in this chapter, every opportunity a sensor has to doserve the ewironment
equates to a certain amount of information which can be obtained about the state of the
environment. A fundamental questionis how to use this potential information to manage a suite of
sensors while maximizing ores net knowledge about the state of the environment. The
search/track/identify decision problem is whether to cortinueto track or identify a previously

detected target and with which sensor to use or whether to search for an, as yet, undetected target.

The approach used in this research to computing the amount of information gained is based
onentropy considerations. Using Shannoris entropy, ( 3-1), as a measure of uncertainty, the
changein entropy over time measures the decrease in uncertainty or, synonymously, information
gained. In the search versus track versus identify trade-off isaue, the amount of information
gained from a sensor measurement of the environment versus updating either the kinematic or

nonknematic state estimate for a target can be computed and used to determine which gption
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provides more information - search, track, or identify. The rationale behind using entropy as an

amount of informationis that it yields a commensurate measure that aff ords this comparison.

The approach to computing the information gain is based onmutual information - the change
in entropy of the pdf before a measurement is taken and after it istaken asin ( 3-2 ) where
entropy, H, is computed based onShannoris entropy formula. Specifically, entropy is defined as

H, =-y IO(Xi)log p(Xi) for the discrete case (3-3)
= —II p(x)log p(x) for the continuous case
where p(x) is the probabili ty density (masg functionfor the continuous (discrete) distribution.

The foll owing sections describe how information ggin is computed for target detection (search),

tracking, and identification.

3.6.1 Target Search Information

Target locations are maintained probabili stically — that is by maintaining a probabili ty
density functions (pdf). Thefirst pdf is used to represent the probable location d an undetected
target andis used to determine where to search next. The assumptionis that since the number of
undetected targets is unknown, once a target has been detected, thereis always anather target to
be detected. Upon citecting atarget, its location is maintained separately by the kinematic state

estimation processand nd as part of the undetected pdf.

Typically, sensor performance characteristics are specified by a particular signal to nase
ratio (S/N). Theapproach used hereisto modd the sensors in terms of their probabili ty of

detection (Pp), probability of false alarm (Pgs), and beamwidth. The assumptionisthat a
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Figure 3-1: Uniform Distributionof Probable Undeteded Target L ocation

particular Pp or Pea can be trandated into an equivalent S/N for each sensor and then the S/N
can betrandated to a particular sensor design. By using this paradigm, it allows any type of
sensor to be modd ed thus providing the abili ty to study the df ects of different sensors and

sensor scheduling schemes.

Given this representation d sensors, the asaumptions of the undetected pdf include:

—The search areais represented in Cartesian space (X, y) quantized into m by n cedlls for atotal
of mCh cdls.

—Theinitial density functionis afunction d a priori information. In the case of the*in
harm’sway” situationwith noa priori information, theinitial density functionis assumed to

be uniform as $hown in Figure 3-1. For the uniform case, the location d the undetected
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target(s) is unknown so the probability of target beinginacell is p(tgt in cell xy) =1/ mn

with the distribution function f (x;,y;) = %n .
m n
- f(xy) isapdf andtherefore 3y f(x,y;) =1.
i=1 j=1
—When a sensor performs a measurement, its gatial detection dstribution (under the beam)
based onbeamwidth, Pp, and Pr, is converted to an appropriate pdf in Cartesian space and

use to update the undetected target pdf.

Using the above representation, two randam variables are hypothesized, A and B. B maps
the location d targets in the search area to the integer cells before a measurement istaken. A
maps these same locations after a measurement is taken. The amount of mutual information
between the two randam variables can be calculated by the diff erence in entropy between the A

and B using the discrete case of ( 3-3).

It is asumed that the MM has accessto a two dmension probabili ty density function (pdf)
of the operational area which is maintained in real-time by the fusion space. When
measurements are made by a sensor, whether they detect a target or nat, they influence the pdf of
where an undetected target is most likely tobe. A priori order of battle information can be used
toinitially skew this pdf to reflect expected target deployment. A target which is detected
indicates an area which should nd be searched again, although it may be observed in arder to
convert the target from detection to track and maintain track. A measurement without a
detection decreases (to 1-Pp) the probability of atarget beingin that area. After a number of

measurements, the probabili ty surface of possble locations of undetected targets becomes quite
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convduted yet does indcate by its peaks the areas which have the highest probability of an
undetected target being dtected. Thereis also an ongong temporal low-passfiltering d the pdf
which acts to slowly return the undetected target pdf to a uniform distribution because of the fact
that targets could have moved from one unsearched area into an area which has already been
searched. Esentially this reflects an increase in world target modd entropy as the time since the

|ast measurement increases.

Sincethe MM has accessto this pdf, it uses the goal-lattice derived values to determine when
to search as opposed to tracking a identifying. In deciding to request a search, it must pass
addtional informationto thell in arder to enablethell to decide what type of observation function
to perform. The additional parameters which must be passed include where to search, to what level
of certainty to perform the search as measured by (1 - Pp), and a time by which the search must be
completed. Notethat by only specifying the level of certainty rather than the sensor to use, thell
gtill retains the greatest degreeof freedom in determining what type(s) of observation function(s) to
request from the sensor manager. Type of function hererefersto high- or low- resolution bearing,
high- or low- resolution range, Doppler, or some combinationthereof. That is, thell takes the
general requirements as pas<d to it from the MM and refines them by determining which o the
functions which are avail able to this sensor suite are capable of supdying the requested
information. This approach leaves the actual observation-function-to-sensor-task mapping to

OGUP&AA.

What can be seen from this first modd is a layered approach to gptimization in which the

MM has an imperfect, coarse modd of the target and sensor world with noregard for the actual
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manner in which its requirements are gaing to be satisfied. From this modd, search, track, or ID
(with the appropriate accuracy and temporal constraints), the MM makes a request which will
satisfy its optimization gals which are derived from, or at least quantitatively expressed by, the
weighted gaal-lattice. It does nat bother itself with the implementation cetail s but assumes that

there is ome mechanism which can be used by the sensor scheduler to med its needs.

Thereis, of course, the possbility that the [l may na be able to med the information reeds
of the MM and hence must rgect therequest. The MM treats this as anather event and, taking
into account the rgection alongwith a reason for the rgection, may chose to make anather
request with aless $ringent information requirement or temporal constraints, or decide that some
other information reed is more important. This approach leadsto a series of paralld local
optimization routines which are globally more dfective, if nat as accurate, as a singe, sensor
system optimization approach because of the reduced combinatorics of information reeds to
sensor avail ability and capabili ty mappings. It is also conceptually more convenient to partition
the space of possble alternatives alongthese lines and possbly apply diff erent optimization

criteriato the different layers.

3.6.2 Target Tracking Information

One can also compute the amount of information gain attributed to updating the kinematic
state estimate of atarget in track. Tracking d atarget is probably the simplest and purest
information transferring processes. As the target moves, this information degrades between
observations and must be updated periodically. At periodic intervals, measurements of the

target’ s position are made and an associated position error covariance is calculated. Assuming
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that the erors are Normally distributed and that as time passes snce the previous date estimate
update, the density flattens (variance increases) but remains Normal. Accordingly, the variance
of the position probabili ty density is increasing in the absence of measurements. Said ancther
way, in theinterval between measurements, the target’ s motion increases uncertainty (decreases
the amount of information) in its position whil e the measurement processincreases the amount

of information about its position.

Track information can be divided into two similar but distinct functions. Thefirst is the
transition from detection as aresult of a search to tracking atarget. The secondisthe
maintenance of atarget whichis already in track. In thetransitionto-track phase, consideration
must be made as to howv longto wait before taking the next measurement. In the case of a non
Doppler sensor, enough time must eapse between the initial detection and a second
measurement in arder to get a goodestimate of velocity while still maintaining a high probabili ty
of detecting the target a secondtime. If the original detection measurement contains both
position and wveocity information, then the considerationis one of how soonto make a
measurement in arder to reduce the eror covariance of the state estimate to a level requested by

the MM..

Search information hes only one temporal constraint, but track information has implied as well
as Pecified temporal constraints associated with the willi ngressof the MM to tolerate the
possbility of atemporary or permanent lossof track. That is, the MM must specify na only the
time by which a measurement must be made, but also the maximum error covariance matrix, P,

which it iswilli ngto acoept. Thell can use these values which are contained in the request and
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combine them with an extrapolation d the eror covariance and state obtained from the fusion
spaceto determine how longit can wait for the sensor scheduler to make its measurements and
still provide the fusion space with measurements which can be converted into a observation d

the accuracy requested by the MM.

Fortunatdy, the etrapolation d the eror covariance can be computed recursively
backwards from the requested error covariance matrix (Preq ) to the P* of the previous
measurement. The net result of this computation is the number of time intervals (or the total
elapsed time) between when the previous measurement was made and the time by which the next
measurement must be made in arder to keep the eror covariance below the requested maximum.
This requested error covariance may be specified in terms of P itself, or some norm defined

onthe P

What this processrequires is an appropriate target mode that incorporates the maneuver
characteristics of the target and a tracking filter state estimator that provides date estimates as
well as error measures. One of the most widely used algarithms for such a processis the Kalman
filter. Aspart of the Kalman filter process and error covariance matrix, P, is maintained and
propagated. It isthis matrix that captures the amount of uncertainty associated with thetarget’s
state estimate. With each dbservation, the eror covariance matrix is extrapolated based onthe
target’s motion and then updated resulting in a decrease in uncertainty yieldinginagainin
information. The extrapolated covariance matrix, P, captures the decreasein information cue

to the target’ s maneuvers whil e the updated covariance matrix, P*, captures theincreasein
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information due to a sensor’s measurement. Based onthe statistical asaumptions of the Kalman

filter, P~ and P can be computed before a measurement is actually made.

Since P is a matrix, one must define a norm in order to calculate the entropy such as the
determinant of the matrix. Using ( 3-3) for the n-variate case and assuming a normal
distribution, the entropy of P becomes[96]

Hy =2log(2re) +110g(P]) (34)

n
2
where |P| denates the determinate of the covariance matrix. Defining the information gain

between thea priori and a posteriori entropiesasin ( 3-2), theinformation gain for the n-variate

normal distributionresultsin

| = Dlog(2me) + L log(Py ) — (2log(2me) + 2 log(P,)) (3-5)

P |D
=1 b
ZIOQQEJ%

where P, and P, are the covariance matrix of the erors before and after a measurement,
respectively. Thisresultsin the amount of information gained due to the change in the

uncertainty about the state of the target.

This measure can be extended to the case of multiple targets and multiple sensors. Since
there is no measured entropy change for a target which is not observed, the information gained is
due only to the observed target. Since exch target in track has its own error covariance matrix, the
optimal chaice of which target to measure is the one that yields the most information. The
asumptionis that the global information gain can be maximized by choasing the greatest

information gain at each goportunity without regard to future measurements. Each sensor has
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different characteristics that include measurement noise. Thisis accounted for in the propagation

of P.

There are at least two ways to determine the maximum time between track updates such that
an information criterionfromthe MM ismet. Thefirst is to specify a maximum leve of
uncertainty or uncertainty threshdd (as measured by entropy) which is not to be exceeded. The
misson manager specifies the uncertainty threshdd and the Il computes the time when that
entropy threshdd will be exceaded based onan approximation to the extrapolation d the current
error covariance matrix P . Usingthe eror covariance extrapolation equation, an information

rate (or information rate propagation functionif extrapolation d P, isnat linear), or an

approximation d this process can be used to compute the time at which the eror covariance

matrix will exceel the desired uncertainty.

Given the threshdd specified by the misson manager and the eror covariance matrix is

extrapolated using ( 3-7 ), with the entropy computed to determine an information rate using

Info threshdld = Inforate* n (36)
n= Info threshald
Info rate

A secondapproach is also based onthe desired level of uncertainty specified by the misson
manager, but assumes a constant update (measurement) interval and calculates the actual number
of update intervals, n, to skip before taking the next measurement. The net effect is the same as
the entropy-based approach, however thisis an exact approach which may have a closed form

solution, and orce again shows that thisis an Il problem which can be solved in dff erent ways
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and nd a misson manager problem. It is assumed that the MM passsto the Il the maximum
error covariance that it is willi ng to acoept and which will allow the MM to med its goals. What

isdesired is the time at which to make an doservation d thetarget in track in arder to produce a

Pc which dces nat excee this corstraint. The problem is how to compute or approximaten ,

the number of uniform update intervals which are to be skipped while allowing the P, to

propagate and gow. The following shows the development of the equation which must be

solved for n.

Given the eror covariance etrapolation equation [84]
P =Py Py Py’ +Quy (37)
andthe eror covariance update equation
Pe = [ =K Hi ] P¢ (3-8)
where

1 i
Kk:PI;H-IL-[HkPI;HI+Rk] (39)

if no doservationis made at time k, then the observation matrix Hy = 0. Substitutinginto ( 3-9)

yields
-1 _
Kk:Pk‘o[opk‘o+Rk] (3-10)
=0
Then
P = [I-0]P¢ (3-11)

Py

Going back oretime step
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O (3-12)
and substituting ( 3-12) into ( 3-7) yieds
Pe =Py Py @4y +Qiy (3-13)
But
Py =P P,y q)k—zT +Qy- (3-14)

Now substituting ( 3-14) into ( 3-13) yields the recursive equation
- - T !
P =®Pug | Pua Pip Py +Qup | Prq +Quy (3-15)
=0y Py Py Ppy” Oy’ + D4 Qi Py’ +Qiy
Continuing backwards to time step k-n produces

Pk_ = CDk—1"'q)k—n PI:—n CD-I[—n "'q)-ll<-—1 + CDk—1"'q)k—n—1 Qk-n CDk—n—l"'q)k—l + (3-16)
Py-g - Prn-2 Qun-1 Pren—z = Prg 7+ Qpp

=00, 0P, DL, a0
EﬁEIl k—jD k-n E]Ell k—n—]+1D

n_]-D@_j |:| _j T DD
D, L (ORI + _
J_EEHEl k mEQk n+j-1 Hnl_:ll k n+]+m—155 Qk 1

If itisasumed that the processis dationary and the transition matrix does nat change with time,

then ®, =@, _; and Qy = Qy_; then (3-16) can be simplified to

-1 . i -
Pk_:chP;_n(q)T )n+nz Q(DJQ((DT )J @_}_Q (317)
=1
alowing P, to be expressed intermsof n, P,_,, and Q.
P, canbe expressd intermsof P;, H,, and R [84] where
p;_lzpk‘_l+HI RilH, (3-18)
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Pe =P -HE R;lHk%_l

Given that the desired P, is known, the requisite P, can be computed from ( 3-18). Usingthis

maximum allowed P, andthelast updated error covariance matrix, P,_,,, n can be computed

from ( 3-17).

3.6.3 Target Identification I nformation

There are two aspects to identification information, the first being the obvious reductionin
uncertainty about the classof target, the type of target, or the specific (hull-number, side-
number) of thetarget. Thisisanumber which is easily computed from the enumeration d the
possbletypes. A secondaspect of identificationinformationis the interaction between ID and
target state estimator performance. Most target state estimators are designed based onan
asumed target modd, the parameters of which change depending onwhether the (e.g., airborne)
target is a transport, attack aircraft, fighter, or missle. Anather confounding aspect of target
trackingis the nonstationary statistical behavior of targets, particularly when they are manned
and maneuvering. While the modd may be the same for these targets with dverse
maneuverabili ties and nonstationary maneuvering, the ability of the state estimator to maintain
track of atarget is dependent onthe proper chaice of filter parameters. In some cases, multiple
state estimators with dff erent model parameters are implemented and updated simultaneously
and the innowations processis monitored to determine when a maneuver is initiated, indcating
that a different state estimator than the current one may be computing the minimum error

covariance state estimate.
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Fromthell point of view, it does nat care whether the ID is requested to improve tracking
performance or to resolve ambiguities about the specific type, class or hull-number (side-
number) of thetarget. The MM does need to includein its ID request the track number to 1D, the
time after which the ID would nolonger be of valuetoit, as wdl as the degreeof identification

which it neals.

There are a number of goal-oriented reasons for which the MM requests identification
information about a target ranging from targeting (Which is the most important target to shod
at?) to improved performance of the target state estimator by providing it with the relative
maneuvering classof the target (transport, attack, fighter, missle, etc.) so that thetarget state
estimators assumptions can be improved. Inferential identification, that made from the target
track data itsdf, is dorein the data fusion space and requests of this type are the result of
specific search o observation requests made by the MM . Direct identification, in which the
sensors are asked to reduce the uncertainty about a specific, nonkinematic characteristic of a
detection a target in track, do nd require the type of calculations previously discussed, but are
processed in thell as being mappings from ID information requests to sensor scheduler requests
where specific, non-kinematic measurements are scheduled. Thell performs atable look-up that
determines which type of observations will yied the desired identification. For example, if the
MM wants to determine the type of target one could passvey use dectronic support measures
(ESM) to doserve the signals emanating from the platform and by consulting the dectronic order of
battle (EOB) in the fusion space, determine what type of aircraft it is. If a more detailed hull -
to-emitter correlation were desired, then some particular ESM characteristics might be used

which require alonger observationtime. The techniques for identification are numerous and
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neal nd be discussed here other than to indcate that the identification methods, their appli cabili ty,
and qoerational constraints can belisted in a table, sometimes with a one-to-many mapping, and

these observation gotions downselected and passed to the sensor scheduler.



Chapter 4

- Maneuvering Target Tracking

4.1 Background

Tracking a maneuvering target invdves filtering and predictionin arder to track the target.
“Filtering refers to estimating the state vector at the current time, based upon all past
measurements. Prediction refers to estimating the state at a future time; we shall seethat
prediction andfiltering are closdy related [84].” One of the most commonly used technique for
target tracking is the discrete Kalman filter developed by Ruddf Kalman. The Kalman filter is the
optimal li near, unbiased state estimator given its assumptions and is used to filter past
measurements and predict where a target will bein thefuture. This target location predictionis
then used to point a sensor in arder to track thetarget. An error covariance matrix is maintained as
part of the normal computation processof the Kalman filter. This error covariance matrix can be
considered as a measure of uncertainty of the kinematic state (call ed the state estimate) of the

target.

Thetracking d maneuvering targets may be complicated by the fact that acoderation may na
be directly observable or measurable. Addtionally, apparent accderation can beinduced by a
variety of sources including human input, autonamous guidance, or atmospheric disturbances.

Several approaches to tracking maneuvering targets have been proposed in the literature and can

77
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be divided into two categaries both of which assume that the maneuver input commandis
unknownn. One approach is to modd the maneuver as arandam process The other approach
asumes that the maneuver is nat randam and that it is either detected o estimated in real time.
Both asume a rectili near modd of target track. The randam processmodds generally assume
one of two statistical properties, either white nase or an autocorreated nase. The multiple-modd
approach is generally used with the white naise mode whil e a zero-mean, exponentiall y correated
acoderation approach is used with the autocorrelated ndse modd. The norrandam approach uses
maneuver detectionto correct the state estimate or a variable dimensionfilter to augment the state

estimate with an extra state component during a detected maneuver [97].

Anather isaue to be considered when tracking a maneuvering target is whether to perform the
Kalman filter in polar or Cartesian (X, y) coordinates. In general, a sensor’s measurements are
reported in range and bearing (or bearing orly in the cases of pasdve sensors) to the target. If
Cartesian coardinate are used, then the range (r) and bearing (8) measurements must be converted

through the transformation equations:

X =rcos0 (4-1)
y=rsnb

which resultsin crosscorrdated measurement nase. The resulting covariance matrix can be

represented as
b2 o2 C (4-2)
Ry=0, 3C
Fx OyE

by using afirst order expansion[98], [99], [10Q where
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02=0%cos’0+r?cZsin’0 (4-3)
o2 =0?sin*@+r%0} cos’ 6

o}, =4sinB(a? -r%a})

0? = range measurement variance

0} = bearing measurement variance

In using Cartesian coordinates, the state equationis linear whil e the correspondng
measurement equationis norlinear. Using polar coardinates, the state equationis noninear but
the measurement equationis linear [101]. This meansthat trackingin Cartesian coordinates has
the advantage that it all ows the use of linear target dynamic models for extrapolation whil e polar
coordinates may lead to more compli cated extrapolation. By examining (4-1) and (4-2), using
Cartesian coardinates for tracking leads to two major disadvantages. Thefirst isthat the
measured (or estimated) range must be avail able whil e the secondis that measurement errors are

coupled.

The eponentially correlated acoe eration modd approach is one of the approaches most
widdly used to track maneuveringtargets. This chapter examines and compare several
exporentially correlated accderation approaches in both polar and Cartesian coordinates for
acauracy and computational complexity. They include the Singer modd in both polar and
Cartesian coordinates, the Sklansky mode (nat an exponentiall y correlated acod eration),
Heferty’s third-order rational approximation d the Singer modd, and Bar-Shalom and

Fortmann's modd.
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Figure 4-1: Target maneuver probability density function [103

4.2 Singer Model Using Polar Coordinates

Singer [102, [103, [104] developed a modd that incorporates the maneuver capability of a
target that is both simple and suitably represents the maneuver characteristics. The Singer mode
for manned maneuvering targets assumes that a target usually moves at constant velocity and
that turns, evasive maneuvers, and accderations due to atmospheric disturbances can be viewed
as perturbations of the constant velocity trajectory. These acoderations are termed target
maneuvers and are correlated in time with the previous time or the next timeincrement. That is
to say that if atarget is maneuvering at timet, it is likely to be maneuvering at timet+1
asumingthat t is sufficiently small. Singer [107] states that a lazy turn will give correlated
inputs for up to ore minute, evasive maneuvers due to radar detection, terrain features, or
preprogrammed maneuvers will provide correlated inputs for 10 to 30 seconds, and atmospheric
turbulence for only 1 to 2 seconds. Due to this time dependence, the maneuvers are neither
additive nor Gaussan. Singer’s probability density functionfor a target’s maneuvers are shown
inFigure4-1. A target can[102:

- Accderate (maneuver) at its maximum rate, + A With a probabili ty of P

- No maneuver with a probability of Py, or



In arder to usethis modd in a optimal filter such as a Kalman filter, the maneuver naise
needs to be whitened. Singer [103 uses a procedure analogaus to the whitening procedure

developed by Wiener and Kolmogarov. The whitening processes is dore by augmenting the
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Maneuver between - A and + Ay, acoording to the uniform distribution shown in

Figure 4-1.

state vector to include the maneuver variables and expressng them recursively in terms of white

nose

Thetarget maneuver modd isin polar coordinates and gven by the state equation

where

Xy =P X, +G W,

. T
Xp = Tk Uk B By Ue,k]

r—

T
Wy = [Wl,k Wz,k]

1T 00 0 0O 0 oC

0 C
© 1100 0f 0 o
0 p 0O 0 OO o oC
*Thoo1T ol 7 of

0 C
@)000115 @)OE
9000 0 pf D 1F

T = sampling period

p= correlation coefficient of maneuver
=e"" or O1-aT ifaTissmal

(5%, (1-p) o C

_ T — .
Qu= E[W"W" ] - E 0 o}, (- p)E

(44)
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2 _ Ariax-r2 (
M: T 3R?

1+4P, - P,)
R= target range
The measurement equationis given by
Zi = H Xy +V (45)

where

The standard filter equations for state estimation extrapolation, error covariance
extrapolation, Kalman gain matrix computation, state estimate update, and error covariance
updates arethen applied. Thefilter isinitialized based onthefirst two doservations with the

state estimate given by
%2=[20) Hz0-z0) 0 2 +(z@-2@) o (46)

and the norzero dements of the updated error covariance matrix, P2+ , defined as

P, =07 Py =03 (4-7)
2] 20
o o
P, =02 +% P. =02 (1)+%
2 =%, T B % 55 — O'm, T2 %
— 2 — 2
P33 =0y, Pos = O'u, (D)
2 2
o o
P2 = I:’21:_|_—r2 Pis = I:’54:_|_—g
Pos =Py = pc%wl P = Pes = po%\/l2 @

with O, calculated in ( 4-4 ) and
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2 (4-8)
2 = IM,
o, (1) 2(1)

4.3 Singer Modédl using Cartesian Coordinates

A version d the Singer model can be developed for Cartesian coordinates using a constant
velocity modd with exponentially correlated acoderation. The state equation and measurement
modd is

X(t) = F(t) x(t) + G(t) wy(t)
Z(t) = H (1) x(t) +v(t) (4-9)

where

x(t) =[xt) x®) y® yo]

M 1 1 OC
C
0 0O
F(t):%) C
0 0 0 1L
%) 00 OE
[0 OC
C
0
G(t):% C
[0 oC
0 1

1 0 0 OC
H(t):%) 0 1 oF
C

where the processnase is exponentially correlated, assumed to be equally distributed in the x
andy directions, and used to modd the target acoderation. The measurement naiseis normally
distributed with zero mean and covariance R asin ( 4-2 ). The processnase can be whitened by
augmenting the state vector by appendng the necessary state vector components of a linear

shapingfilter. Thisresultsin alinear modd driven by white naise. This whitening processis
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described in Grewal and Andrews [105 and repeated below. Modding the correlated ndse, wy(t),
in (4-9) with a shapingfilter yields

X (1) = Fr (1) Xgr (1) + G (1) Wy (1) (4-10)
Wo(t) =Hge (1) Xgr (1)

where SF denates the shaping filter and w,(t) is a zero mean white Gaussan nase. Usingthe

system modd given in ( 4-9 ) an augmented state vector is formed and gven by
X0 =[x(t) xe®)] (4-11)
Combining ( 4-9) and ( 4-10) yidds the foll owing augmented system:

Ox(t) O OF(t) G(t)Hge(MOOX(t) 0O O 0 0 ® (4-12)
GewH Ho  Fe® BB BemB™

X(t) = Fr (t) X(1) + G (1) w,(1)

2 Bv

z(t)=|H() O

[HO O oF
=H(t) X(t) +v(t)

Using Singer’ s modd, the accderationis uniformly distributed between -A 5 and Ao andthe

mean number of accderation changes, a, in a unit timeis distributed according to a Poisn

process Thisresultsin afirst-order Markov processwith variance o® and time constant 1/a . The

power spectral density correspondng to this exponential processis

20°%a (4-13)

2

W(w) = 5
w” +a

and the system transfer function for the shapingfilter is

av2a (414)

s +qa?

H(s) =

The system nodd for this dapingfilter is
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4-15
X (t) = D DXSF (t)+ gygng(t) ( :

wo(t) = [1] X (1)

The augmented system then becomes

Dx(t)D M1 0 00 0Ox(t)yo OO 0 O (4-16)
x(t)D 00 1 00 0pXt)E o 0§
3 (t)E_ED 0 -a 00 oggl(t)%gb@ 0 gN ©
Dy(t)D %) 0 0 01 ODDy(t)D 0 0 0 |:|2
Uyt @ o o o o 100yn0 O o o O
o 0 O o0 0 O
58 ® 0 0 00 -afHME § 0 ov2af
Ox(t) O
>0 5
x()o @ 0 0 0 O ODD(l(t)
= v(t
JoH b 0 0 1 0 oy E
Oy(t) O
Dy(t)D
.15

with wa(t) and v(t) ~ N(0,1).

4.4 Sklansky Model
The Sklansky modd is a Cartesian coordinate, constant velocity tracking algorithm that does
not modd accelerationto generate position and velocity estimates of maneuvering targets [106].

Thetarget motion is described by

Xoy =X, +TX, +5TK, + - (4-17)
Xn+1 = Xn +TXn

where
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X, = target position
X, = target velocity
T =timeinterval between observations

X, = target acceleration
The state space representation d the Sklansky mode is given by

Xy=1 = PiXy + Gy (4-18)
z, =HX +V,

where

oC

0
15
TO
i

P, =

Eiml=Sieiu]w
o o+ —
O r OO

X =[x x y

=[x position x velocity y position yvelocity]T

2 C
Er/z 0

C
T 0
G:Eo T2/2E
0 C
g0 L=

L .0 00 00
0 o 1 of

T
ay =[uc (k) uy (k)]

= randam acclerationin the x andy coordinate respedively
Vv, =scdar random measurement noise with Q ~ N(0,1)

4.5 Helferty Mode
Heferty [107] develops a turn-rate model that extends the work of Singer by usinga

maneuvering target mode that combines a constant velocity and a probability distribution onthe



87

target’ sturn-rate. Helferty assumes that the accdlerationis independent in both the x and y
coordinates and a uniform distribution onthetarget’ s turn rate with the acoderation maneuvers
exporentially corrdated. This turn-rate mode leads to alinear system that is represented with a

third-order Markov processinstead of thefirst-order process

The Helferty model assumes a processnaise of constant velocity and the turn-rate uniformly
distributed [-rma, 'max] With the turn-rate changing a times in a unit interval. The heading ange of
thetarget is also uniformly distributed but ontheinterval [-1t, . The autocorrdation function o
thetarget acoderationin the x axisis

Ela, M a, (t+ 1] = E[v, WO Sn(t) v, d(t + D sing(t +1)] (4-19)
=v2 E[p2 siny(t) siny(t +r)] e
=vZ E[y? sng() sn(w(t) + qu)] e/
_V2 El]JZSIn ; i —C(‘T‘
= V; Y(t)(siny(t) coswt +sinytcosy(t))| e

= v2 E[ 2 sin? y(t) cosyrt + 2 sian(t)simprcoqu(t)] e

=v2 g2 coqur] E[si n? w(t)]e_“‘r‘
v? 2 ~at|
= 7t E[qJ coqur] e
Theautocorreation function for the target accderationin they axisis

E[ay M a, (t+ r)] = E[v, W(t)cosu(t) v, W(t + 1) cosyp(t +1)] (4-20)
=v2 E[l]JZ cos(t) cosy(t + T)] el
=v2 E[lpz coqur] E[cos2 qJ(t)] e/

_ Viz 2 —alt|
ey E[qJ coqur] e

and the crosscorrdation between the x and y axis can be shown to be zero'””.
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The power spectral density of the autocorreation function d (4-19) and ( 4-20) is norlinear
so Heferty computes and presents a rational approximation for the linear shaping filter for the

turn-rate distribution. It is given as

H(s = b,s* +b,s+b, (4-21)
- s*+as’ +a,s+a,

The state equation and measurement modd used by Helferty isthe same asin ( 4-9) with

x(t)=[x) %)y y®]

1 00
C
'S
1C
.

od
1
o-

o

F(t) =

G(1) =

©O O OkFr oo o
= O O O O O o

I
—~
—
~
I

E1H B8 Hers1g

Applying the whitening processdescribed in Section 4.3, the modd for the third-order linear
shaping filter givenin ( 4-21) for one coordinateis

oo 1 0 Oxs(t)Oo OO (4-22)
X ®=50 0 1 gEa gk HEwa()
Has -a, -afEs(E BE
X5 (t) O
wy® =[b; b, b]F 0
(D E

This results in the augmented state and measurement equation
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o

oo (4-23)

i3
o
2 o

o O O

w

o O BB

N

I
o B O
©O O O O o o

X(t) =

F o o oo oo
R O 0O o oo oo

B
©O O OO O o o o o o
o O O

o O O O r OO O O O
mOoo0000gooo000n
T
e N N - ==2=

o O O o o
o O O o o
o O O o o

N
I
D

O O OO OO oo o o o
o
o
o
o
o

[ BHLEIBLEIGHEIHIE LA

o O
o O
o O
~
—
~
+
<
~
—
~

2(t) =
®) 100 0 O

where

X®) =[xt) %) %0 %O %O vO ¥O 0 v, y0)

and the processnoiseis normally distributed with zero mean and unit variance.

4.6 Bar-Shalom and Fortmann Model
Ancther exponentiall y correlated acod eration modd based onthe Singer Modd is presented by
Bar-Shalom and Fortmann[97]. They use alinear shapingfilter to augment the Kalman filter.

The cortinuous-time state equation and measurement modd is

1 0 00 0(O (4-24)
00 1 00 0f
=0 ° ¢ 2% %5 rwn
90 0 01 0f
® o0 0 00 10
90 0 00 -af
1000 0

xt) =[xt) xt) x® yt yo o]
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The discrete-time state equation correspondngto ( 4-24 ) with sampleinterval T is

x(k +1) = F x(k) +w(k) (4-25)
where
QA T (@T-1+eT)/a® 0 0 0 E
%) 1 @+e®M/a? 0 0 0 0
erAT:%) 0 e T 0 0 0 E
0 0 1 T (aT-1+eT)/a2Q
0 0 0 01 (@+e™M)ja?
m o 0 00 e T B
The discrete-time processnaise covariance matrix Q is given by
T°/20 T*/8 T3/6 O 0 0C (4-26)
aTs Ti6 T2 0 0 0
0=2 ZBT% T2 T 0 0 oE
=200,
"0 0 0 0 T°/20 T*/8 T®/6f
So 0 0 T‘8 T/6 TZ/ZE
50 0 0 T)6 T2 T E

4.7 Mode Comparisons

The five modes described above where tested using Monte-Carlo simulations with 50
replications in arder to compare the state estimation performance of each mode. Two dfferent
target paths [107] were used in the simulations. The first was a target performingan S turn
lasting 40 seconds and the secondis also a S turn maneuver but with an straight segment
between turns and lasts for 80 seconds. Thetarget paths are shown in Figure 4-2 while Table 4-1
provides a summary of the maneuver parameters used in the smulations. Figure 4-2aisthe
simulated target path for the S turn without the straight segment and Figure 4-2b is the simulated

target path for the S turn with the straight segment. The“x” denates the starting position.
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Figure 4-2: Simulated Target Paths

Table4-1: Kalman Filter Simulation Parameter Summary

Scenario

S turn without straight segment S turn with straight segment
Initial X, y position (1500m, 0 m) (200m, 1500m)
Initial polar position r =1500m, 9 =0° r =1513m, 9 =824°
Initial heading 0 0°
Duration 40sec 80 sec
Turnrate 10 m/sfor 20 sec 10 m/sfor 20 sec

-10m/sfor 20 sec Om/sfor 40sec

-10m/sfor 20 sec

Samplerate T=05s"1 T=05s"
Range measurement o, =10m? o, =10m?
variance

Bearing measurement
variance

0y =00001rad?

0y =00001rad?

Maximum accderation

A =1745m/¢

A =1745m/¢

Forward velocity vi =10m/s v; =10m/s
Maximum turn rate Mmax = 01745rad /s Mmax = 01745rad /s
Mean rumber of changes a = 0055565~ a = 0055565~
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Theremaining modd specific parameters andinitial error covariance matrices needed to
perform thefilter simulations are as foll ows:
* Singer (Polar)
P =01
. Py=04
e Qasddinedin(4-4)
e Pinitialized accordingto ( 4-7)

* Singer (Cartesian)

i ooC
©9Th f

» Pinitialized with [100000 1000 1000 100000 1000 1pa@ngthe main dagordl
o Sklansky

o ooC
" VTR of

* Pinitialized with [100000 1000 100000 10p&longthe main dagordl
e Hédferty
« a,=01667 a, =00249 ay=0001Q b, =02335 b, =02132 bh; =00019
according to Hdferty’s formulas [107]

o ooC
"R of

* Pinitialized with [100000 1000 1000 1000 1000 100000 1000 1000 100Q &6

themain dagordl

¢ Bar-Shalom and Fortmann
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¢ Um:Amax/B

* Pinitialized with [100000 1000 1000 100000 1000 1p&a@ngthe main dagorsl

All of the modds performed exceadingy well with extremely small average position and
velocity errors and RM S position and el ocity errors regardlessof target path used.
Figure 4-3 and
Figure 4-4 show the average range and bearing errors, respectivey, for both target paths. The
average range erors are lessthan +4 meters for ether target path while the average bearing error
is between £0.3°. The average range and bearing rate erors are show in Figure 4-5 and Figure 4-6
while the RM S range and bearing errors are shown in Figure 4-7 and the RM S range and bearing
rate arors are shown in Figure 4-8. The average range rate aror is between £5 m/s and the
average bearing rate is between £0.4 deg/s. The RMS errors are 2-4 meters for range, 0.3-0.6 m/s

for rangerate, 0.5-2° for bearing and 0.05 deg/s for bearing rate.

Thefour Cartesian models and the Singer Polar mode state estimate converted to Cartesian
coordinates are compared next. Sincethe S turn path is alongthe 0° radial, the x position error is
smaller (+5 m) then they position (20 m) for al the models. The oppositeis truefor the S turn
with the straight segment sinceit isalongthe 90° radial. The x position error is between 25 m
andthey position error is between £5 m. This can be seen in Figure 4-9 and Figure 4-10. With
few exceptions, the average velocity error, ether x or y, are between £5 m/s. The Singer Polar
modd with the state estimate converted to Cartesian coordinates and the Sklansky moddl produce
thelargest velocity errors but the never excead £15 m/s. The average velocity errors are shown in

Figure4-11 and Figure 4-12.



meters

deg

m/s

94

- o - N
meters
- o - N

N
N

a) S turn without straight segment b) S turn with straight segment

Figure 4-3: Singer Model (Polar) Average Range Err or

04 0
03 03
02 02
01 01
00 g oo
01 01
02 02
03 03
or——— o—
a) S turn without straight segment b) S turn with straight segment

Figure 4-4: Singer Model (Polar) Average Bearing Err or

e N . N
m/s
L I S - S N

0 5 10 15 20 25 30 35 40 0 10 20 30 40 50 60 70 80

sec sec

a) S turn without straight segment b) S turn with straight segment
Figure 4-5: Singer Model (Polar) Average Range Rate Err or



0.4

0.3

0.2

0.1

0.0

deg/s

-0.1

-0.2

-0.3

-0.4

5 10 15 20 25 30 35

sec

a) S turn without straight segment

40

deg/s

0.3

0.2

0.1

0.0

-0.1

-0.2

-0.3

-0.4

95

10 20 30 40 50 60 70 80

b) S turn with straight segment

Figure 4-6: Singer Model (Polar) Average Bearing Rate Err or
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Figure 4-16: Cartesian ModelsRMSY Velocity Errors

The RMS errors for both position and e ocity are almost indstinguishable. TheRMS
position errors are shown in Figure 4-13 and Figure 4-14, respectively. The RMS x andy ve ocity
errors are shown in Figure 4-15 and Figure 4-16. As expected, the Sklansky modd performs the
worst sinceit is a constant velocity model that does nat include acoderation, e.g. acceeration

treated as added nase.



99

Table4-2: Maneuvering Target Model Complexity

Modd

Singer (Polar) 2270
Singer (Cartesian) 2274
Heferty 8390
Sklansky 896
Bar-Shalom and Fortmann 2946

4.8 Summary

The eponentially correlated acce eration models appear to be valid and acaurate moddls of
target maneuvers as demonstrated above. All of the modd, whether in polar, Cartesian, or polar
converted to Cartesian provide very accurate position estimates. The only significant differenceis
when velocity estimates are considered due to the norlinear conversion d the Singer Polar
estimates to Cartesian estimates and the constant velocity assumption d the Sklanksy modd.
Besides gate estimate accuracy, anather consideration in chocsing a maneuvering target tracking
modd is the computational complexity of the modd. One such measure is the number of floating

point operations (flops).

Table 4-2 shows the number of flops for oneiteration d state estimate extrapolation, error
covariance extrapolation, Kalman gain matrix computation, state estimate update and error
covariance update for each modd. The conversion d the measurement noise covariance matrix
from polar to Cartesian coordinates only add an additional 32 flops. As can be seen, the two
Singer modd s and the Bar-Shalom and Fortmann moddls, each a six state estimate modd,
require approximately the same number of flops. The Bar-Shalom and Fortmann model requires
more flops due to the size of the Q and G matrices. The Sklansky modd is a four state estimator

and requires about 2/3 of the number of flops of the Singer modd while the Helferty modd isa 10
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state estimate model requiring over threetimes as man flops as the Singer modd. The flops were
computed for comparable runs of each modd averaged ower 80 iterations of the update process

using MATLAB.

For the purpose of the simulation performed as part of this research, either the Singer modd in
Cartesian coordinates or polar coordinates with position and veocity converted to Cartesian
coordinates will be sufficiently accurate. If increased acauracy is required, several other options
are available. The simplest approach is to apply the debiasing methoddogy by Lerro and Bar-
Shalom [10§. They describe a methoddogy for computing the measurement error covariance
matrix in ( 4-2) differently that they sate insures the true measurement error statistics are used
when performing the Polar to Cartesian conversion. Ancather possble alternative is to use the
multiple mode approach where multiple modds are maintained simultaneously and dtermine
which state estimate to use based upon detecting and estimating the target’ s maneuvering. Since
the performance of the Singer modd can degrade during nommaneuvering portions of a targets
trajectory, one could use two dfferent Singer-based modd filters with dff erent values of the
maneuver variance, 0,,2, and time corrdation, o, and use hypothesis testing to determine when to
switch between the two moddls [109. When atarget is nat maneuvering, the Singer modd is used
to track the target with a — 0 and g, = 0. Once a maneuver is detected the a Singer modd with a
finiteo and 0,2 # Oisused. A similar approach is to usefilters of diff erent dimensions and switch
between them based onmaneuver detection. One such approach is the variable dimensionfilter of

Bar-Shalom and Birmiwal [11Q in which they use a four state ( X,X, Y,y ) constant velocity model

when atarget is nat maneuvering. Based ona maneuver detection scheme, new state components
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are added and a constant accderation modd with six states, (X, X, X,Y,V,V ), isused. Onethe

maneuver is complete, the four state modd is used again.

Two ather possble approaches which can be used to increase accuracy are the interacting
multiple modd (IMM) algorithm and innovations-based approach. The IMM approach consists of
a set of several filters which interact through state estimate mixing to track a maneuvering target.
Efe and Atherton[111] present on such example of an IMM uitili zing adaptive turn rate models
while Blair, et al. [112]), use IMM filtering based onexponentially corrdated accderation models.
Blair, et al., usefour moddsin their IMM filter. They include a constant velocity modd, a
constant acoderation modd, an exponentially correlated mode with increasing acce erations and

an exporentially correlated modd with decreasing accelerations.



Chapter 5

Simulation Study

5.1 Mode Description

In arder to demonstrate and evaluate the proposed Information Theoretic sensor manager, a
two-dimensional multiple target, multiple sensor detection, tracking, and identification simulation
moded has been developed based onthe mathematical mode shown in Figure 2-3. The sensor
manager functions have been partitioned into the Sensor Scheduler and the Information Instantiator
as presented in Figure 2-2. Themodd has been designed to support any reasonable number of
targets and sensors. The position dyserved by each o the sensors can be controll ed independently
of the other sensors or cogperatively to form a pseudo sensor. Each target is assumed to maneuver
independently with target tracking accomplished by using independent Kalman filters based onthe
Singer modd (in Cartesian coordinates) for manned maneuvering targets described in Chapter 4.

The simulation architecture is shown in Figure 5-1.

The simulation modd was developed with the underlying assumption that survelll ance
platforms capable of carrying several different types of sensors (radar, IR, ESM, etc.) are sent
out to survell the environment. Each sensor’s capabili ties and performance are modded through a
Kalman filter observation matrix (onefor each sensor) and nase variance of their measurements.

As discussd earlier, the smulation modd captures sensor characteristicsin

102
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terms of their Pp, Pra, and fundamental parameter measurement accuracies such as beamwidth,

range, range rate, and bearing.

Theamount of maneuverabili ty of a target has a direct correlation to the amount of uncertainty
about the target’ s future position. One can ether increase the measurement rate of a sensor or
combine independent measurements from multiple sensors in arder to decrease information a
conversdy, gain information. 1n the case of increasingthe measurement rate, the amount of
information gained is limited by the measurement noise (sensor’s accuracy) and the processnoise
(rate of increasein uncertainty of thetarget’s gate due to maneuvers). Inthe extreme limit, afixed
target yields no rew information with each measurement after thefirst except that gained by
averaging repeated ndsy measurements. If you are currently tracking a slow maneuvering target
that is actingin a predictable manner, it then becomes possgble for the sensor manager in general
and the Information Instantiator in particular to trade off trackingfor search o identification. That
is, reducing the frequency of observations of the target while nat losing track would nd result in

any significant reduction in the accuracy of the state estimates.

5.2 Search Area

In arder to apply information theoretic measures, the search area is represented
probabili stically. That is, a search areais divided into mZin cdls with each cell containinga
probability of an undetected target beingin that cell. Coll ectively, the cells can be considered as
a discrete probabili ty density function (pdf). When a search is performed, the return signal based
upon a target location results in an measurement vector and then a detectionis determined in the

fusion space. After each sensor observation, the pdf is updated thus the pdf is a global estimate
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of target location uncertainties and can be used to determine the most likely location d an as yet

undetected target and hence where a sensor should search next.

By representing the search area & an undetected target location pdf, the information gained
by observing the environment can be computed based onmutual information - the expected
changein entropy of the pdf before an doservation is taken and after it istaken. Thisis defined
as
| = H(before) - H(after) (51)
where H is computed by using the discrete Shannonentropy formula
- P(x)log p(x ) (52)
Since the pdf is based onsensor observations, the pdf is only an estimate of where targets are (or
are nat) and nd their actual location. Actual locations of detected target are maintained
separately for comparisonin arder to evaluate the df ectivenessof the various sensor scheduling

schemes.

While this method d dividing the search area into grids provides many benefits, it does come
at a significant cost most natably the computational overhead associated with maintaining the
undetected pdf. After each sensor observationis completed, the new probability in each grid must
be computed and each element of the array representing the undetected target pdf must be updated.
Thelarger the search area the more pdf computations must be dore and the moretime it takes to
run the simulation. For example, if the search areais 100 cells by 100 cdl s then the number of
computation required after a sensor observationis 10°. A 1000 ty 1000cell pdf would require 10°

updates after each sensor observation.
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5.3 Sensors

Several types of sensors at multiple locations and the use of pseudo-sensors are avail able in the
simulation modd. Thetypes of sensors represented include sensors that provide range and bearing
(with o without Doppler capabili ty), bearings only sensors, dectronic support measure (ESM)
sensors, and pseudo-sensors. As gated earlier, a pseudo-sensor is one in which two o more
sensors work cooperatively to perform a measurement that neither of them is capable of making by
itsdlf. For example, two noncoll ocated bearings-only sensors can be used to measure the position
in 2D space e/en though each can orly observeits line-of-bearing. Thus, pseudo-sensors are used
to modd the cooperative use of multiple bearings-only sensors located on dff erent platforms to

provide range and bearing estimates.

One method d simulating the capabili ties of various nsorsisto explicitly define such

characteristics as

bandwidth

— waveength

— duration d waveform

— signal power per pulse

— recever nase strength

— diameter of radar aperture
However, for the purpose of this smulation a more convenient and simpler methodis employed.
Regardlessof the sensor, the sensor’ s performance can be captured by its Pp, Pra, and

beamwidth. The S/N is determined by the environment that the sensor is operatingin (e.g. leve
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of clutter and dectronic jamming). Then using this /N and setting a desired Py (Pra), the sensor’s
operating characteristics determines the Pea (Pp) [113. Thus, these threesensor parameters fully

specify the sensor’ s capabili ties.

5.4 Targets

Any number and type of targets can be represented in the moddl. Target movements are
driven by randam maneuvers of specified variances based onthe Singer target maneuver
probability function. Different types of targets can be represented by setting the appropriate
maximum accderation, maneuver correation coefficient, probabili ty of maximum maneuver
(positive and regative accd eration) and probability of no maneuver. Addtionally, each target can
beinitialized with any starting range and bearing. Thereis nointeraction d targets -- that is, each
operates independently of each ather. The actual locations of each target are maintained for
ground truth purposes (e.g. to determineif the target is inside the sensor’ s beam and to determine

the probabili ty of detection).

5.5 Target State Estimator

Anindvidual Kalman filter is maintained for each target that is detected. Based onthe
review and testing d maneuvering target modds from the previous chapter, a Singer-based
Cartesian coordinate mode has been sdlected for use in the smulation model. The reason for
thisisto keep the target state estimates in the same coordinate system as the undetected target
pdf. A multiple mode approach with a bank o threefilters using dff erent acoderation and
probability of maneuvers has been implemented in the simulation modd. If the diff erence

between the measured versus filtered position (the innowations process reaches a specified
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threshdd then a different filter can be sdected. Identification d atarget can also result in selecting

adifferent filter to be used.

As discussed in Chapter 3, the eror covariance matrix (P), maintained as part of the Kalman
filter computation, captures the amount of uncertainty associated with atarget’s gate. This
covariance matrix is updated after each doservation resulting in a decreasein uncertainty or gain
ininformation. The information gained due to the change in uncertainty about the target’s date
is calculated using the determinant of the eror covariance matrix before (Py) and after (P,) the
update. Using the continuous version d Shannoris entropy formula and assuming a Normal
distribution as discussed in Section 3.6.2, the amount of information gained is based onthe

norms of P, and P, asgivenby (3-5).

5.6 Sensor Scheduler

An enhanced version d the dynamic sensor scheduling algorithm called the On-line, Greedy,
Urgency-driven Pre-emptive Scheduling Algarithm (OGUP3A) [19], [20] has been incorporated
into themodd. OGUP SA was developed using the threemain scheduling poli cies of Most-
Urgent-First to pick atask, Earliest-Completed-First to sdect a sensor, and Least-Versatile-First
to resolveties. One of the key components of OGUP A is the information in the applicable
sensor table. This tableis the mechanism that is used to asggn requested tasks to specific

SENSors.

Significant improvements and modfications to OGUPSA have been made in order to

implement the algarithm for usein this sSmulation. Of particular interest is the expansion and



development of the OGUP SA appli cable sensor table to more reglistic tasks than in the original
OGUPSA paper [19]. Theoriginal work focused ona unit execution time task scheduling problem
without any task preamption. Logic has also been added to insure that a task requiring more than a
unit executiontimeis nat interrupted during the performance of atask. Anather improvement
restricts the scheduling and initiation d atask by usinga “commence no soorer than” time. This
can be used to schedule future tracking a identification tasks at specific times. Thefinal
enhancement invaves the use of pseudo-sensors. Two types of pseudo-sensors have been
incorporated into OGUPSA. Thefirst is a sensor that operates in several modes. An example of
thisis a Doppler radar operating using either Doppler or nat usingit. The other type of pseudo-
sensor is the cooperative use of 2 bearings-only sensors at diff erent locations in arder to dbtain
range and bearing measurements of atarget. An updated version d the OGUPSA scheduler

architectureis sxown in Figure 5-2.

5.7 Information I nstantiator

The sensor manager is concerned with searching, tracking, andidentifying. These manager
functions need to be mapped to sensor scheduling tasks. It is the Information Instantiator that
determines what observation functions are required based oncomputed expected information for
each request from the misson manager. As discussed in previous chapters, information requests
which are passed from the MM to thell are of threetypes, search, track, and identification.
Alongwith each o theserequests is an indicator of the type or amount of information required
by the misson manager as well as temporal constraints before which ar after which the fulfilli ng
of the request would be of decreased value to the MM . An appli cable function table maps the

sensor management functions to the tasks used in OGUP SA' s appli cable sensor table has been
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developed and implemented. The appli cable function table provides the mechanism for the sensor

manager to request sensor independent tasks to med specific misson gals and it becomes the

responsibili ty of the sensor scheduler to assgn those tasks to specific sensors. An example of an

applicable functiontableis shown in Table 5-1.
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Table5-1: Applicable Function Table Mapping M anagement Functions to Scheduling Tasks

Functions Sensor Scheduling Tasks

Task 1 2 3 4 5 6 7 8 9 10 11

Acauracy | Low | High | Low | High | Low | High | Low x,y | Highx,y | Low X,y | LowXxy | High
X X y y Xy | xy | High x | Low x [(x deted)|(y deted)| feature

Search X X X X

Transition X X X X

to Track

Track

High X X X X

acauracy

Low X X X X

acauracy

Reacquire X X

| dentify X

5.8 Programming L anguage

The simulation moodl was developed ona Sun SPARC workstation and a DEC Alpha

workstation. However, the modd can also be run onIBM compatible personal computers as well

as most computer workstations. For ease of programming, the modd was developed using the

matrix-based MATLAB programming language. The main drawback of this languageisthat it is

an interpreter so execution can be slow. The major advantage of using MATLAB isits build-in

graphics capabili ty and the inherent programming structure that can later be converted to the C-

language or a simulation language for compil ation and faster execution as well as its portabili ty.



Chapter 6

Simulation Results

6.1 Search Area

The search area used in the following example is assumed to be a 10 km? area. The pdf for
this sarch areais divided into 10° cdls with each cell representinga 10 m? area. The center of the
search area is asumed to be at a significantly large enough range so that the small angle
approximation can beused. That is

s=rdo (6-1)

whereissisthearc length, r istherange, and dfisthe angein radians. Sensors with beamwidths
of 0.006° (100prad), 0.1° (1750prad), and 1° (17500prad) at 100km would correspondto a

beamwidth of 1, 17 and 175 cdls respectively assuming linear beamwidths.

6.2 Sensor Description

Five sensors with dff erent Py, Pea and measurement naise were used to detected, track,
and identify targets. Four types of sensor were modeed andinclude Radar (1 with Doppler
capabili ty), forward looking infrared (FLIR), infrared (IR) scanner, and an dectronic support
measure (ESM) sensor. The sensors are located ether alongthe X or Y axis of the search area
so the two locations will be orthogoral to each ather. Regardlessof which axis the sensor is

located on the sensors are asaumed to be 100 km from the center of the search area. The types of
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Figure 6-1: Sensor L ocations and Search Area Diagram
Table6-1: Sensor Description
Sensor A Sensor B Sensor C Sensor D Sensor E
Nominal type Doppler Radar Radar FLIR IR scanner ESM
Characteristics Range Range
90m £ 10% 30m £ 10%
(0.9 cdl) (0.3 cdl) Bearings-only | Bearings-only | Bearings-only
Bearing Bearing 0.1° =60 10Qurad = 60 1° =60 (29
1° =60 0.1° =60 (2.8 cdls) (1 cdl) cdls)
(29 cdls) (2.8 cdls)
Rangerate
+10%
Location X axis Y axis X axis Y axis X axis
Po 0.95 0.95 0.99 0.99 0.5
Pea 0.001 0.001 0.001 0.001 0.01
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Figure 6-2: Ground Truth of the Targets

sensors and their locations relative to the search area ae shown in Figure 6-1 whil e a descriptive

summary of the sensors characteristicsis provided in Table 6-1.

6.3 Targets
Threeclasss of targets classes were modeed and include fighter, bomber, and transport
targets. A total of fivetargets -- 3 fighters, 1 bomber, and 1 transport -- were used. As dated in

the previous chapter, each target operates independently of each aher so there are nointeractions



Table6-2: "InHarm'sWay" Goals

Goal Number | Goal Included Goals
1 to dotain and maintain air superiority 2,3,4,5
2 to minimize losses 6,7, 8
3 to minimize personrd losses 6,7, 8
4 to minimize weapons expenditure 6, 8
5 to seize the dement of surprise 8
6 to avoid own detection 9,10
7 to minimize fuel usage 10, 11
8 to minimize the uncertainty about the environment 12,13
9 to navigate 15, 16

10 to avoid threats 15, 16

11 to route plan 15, 17

12 to maintain currency of the enemy order of battle 14,16

13 to asess s$ate of the enemy’ s readiness 14

14 to coll ect intelli gence 15, 16, 17
15 totrack all detected targets

16 to identify targets

17 to search for enemy targets

between targets. Figure 6-2 shows the paths of each target’ s ground truth with the position d the

targets at the beginning d the simulation runs denated with an “x.”

6.4 Latticeof Goalsfor Determining Weights Used by the Misson Manager

Sincean “in harm’s way” scenario assumptionis being used, a subset of applicable Air
Force goals from Figure 2-10 were identified and used to produce a lattice of goals. Seventeen
of the 90 Air Force goals that apply to the“in harm’s way” assumption were used to produce
lattice that can be described as a smpler, pruned version d the ettire Air Forcelattice. The
gaals that were used arelisted in Table 6-2 with the resulting | attice and associated weights for
each gaal shown in Figure 6-3. The bottom threegoals (observation functions) are track,

identify, and search with weights of 0.36, 0.46, and 0.18 respectively. These weights were then
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used to establish the priority associated with the observation tasks sent to OGUPSA (the sensor

scheduler).

6.5 Sensor M anagement Comparisons

Asdiscussed in Chapter 2, previous snsor managers have been based onad ha
methoddoges. Thisisthefirst mathematically rigorous sensor management modd and as such,
there are no dher sensor management schemes to compare it with. 1n an attempt to perform a
comparison, the simulation was run using a purely randam sensor management scheme and the
sensor management methoddogy (including the Misson Manager and Information Instantiator)
presented in this dissertation. In both cases the OGUP SA sensor scheduling algorithm was used
to schedule tasks to sensors. I1n the randam case, the weights for the threefunctions (search,
track, id) were all equal and the search aimpoints were chasen randanly alongwith the time

between track updates.

For the information theory based sensor manager, the weights from the lattice in Figure 6-3
was used to set the priorities for the threefunctions. For search tasks, the pdf cdl with the
highest probability of an undetected target was chosen as the aimpoint for the sensor. In the case
of tracking tasks, an information threshdd was defined and the target error covariance matrix was
extrapolated to estimate the informationratein arder to determine when to perform a track

update. Lastly, an identification tasks was requested orce a target track had been establi shed.

The simulationwas run for 100time intervals with each time increment equal to 0.1 seconcs.

As expected the randam case did nd perform well. Without using weights and randamly
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0.15 0.27

0.36 . 0.18
Track ID Search

Figure 6-3: "In Harm'sWay" Lattice

choasing where to search, targets took longer to detect and establi sh track dueto the rgection o
transition to track and track requests by OGUPSA. This demonstrates the need for a method such
asthe use of POSET s and lattices, to establish weights that can be used to establish priorities

between the search, track, and identify functions.

Generally, theinformation based sensor manager detected and established track onall 5 targets
soorer that the randam approach. But looking at the change in entropy of the search area & $1own
in Figure 6-4, there is no significant diff erence between the two cases. Thereasonfor thisis that
the number of sensor operations for each sensor in both runs were approximately equal -- the
information theory based simulation was just more dficient in detecting and establi shing tracks of

detected targets than the randam simulation.
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Once tracks were established for atarget, the state estimation processperformed equally well

for both management schemes. As gated previoudly, the Cartesian coordinate version d the

Singer moodd was used to provide the kinematic state estimates for the targets. The updated state

estimate, X , for targets 1 (fighter) and 2 (bomber) are presented in Figure 6-5. As can be seen,

the Singer-based modd Kalman filter performed extremely well.

Asdiscussd earlier, the update rate of atarget in track is dependent onthe changein

uncertainty, captured by entropy, reaching a specified threshdd. Once atrack has been

established for atarget, an initial error covariance matrix, P, is established. P cortinuesto gow

until an update of thetarget’s date estimate is made via asensor observation. The observationis
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Figure 6-6: Changein Target State Estimate Uncertainty as Measured by the Entropy, H, of
the Err or CovarianceMatrix, P

conwerted to a measurement and the target’s date estimate is updated. This update process
reduces the eror associated with the target’s tate estimate -- the P matrix is reduced. This can

easily be seen in Figure 6-6 where entropy of the P matrix is plotted for targets 1 and2. The

peaks are the extrapolated P matrix prior to a sensor measurement, P, , and the point directly
below is the updated P matrix, Plj , after the sensor measurement. The diff erence between Py

and P, isthe amount of information gained by the sensor measuremen.
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As previously discussd in this sction, it is virtually impossble to compare diff erent sensor
management schemes dueto their ad ha: nature. As guch, two sensor management schemes -
Goal Lattice (information based sensor management system) and Non-Prioritized (with randam
search and randam time between track) - wererunin arder to demonstrate the use of goal
lattices. A summary highlighting the diff erences between the proposed information based sensor
management and the non-prioritized, randam sensor manager is shown in Table 6-3, Table 6-4,
Table 6-5, and Table 6-6. Regardlessof the measure of eff ectiveness the new Goal Lattice
system performed superior to the non-prioritized ore. The Goal Lattice system initiali zed track
onaverage half as fast as the nonprioritized system and transitioned detection d targets to track
nearly an arder of magnitude soorer (Table 6-3). While the nonprioritized system always had
failures of when transitioning a detection to track (Table 6-4) and accasionally had reacquiring
track failures after a track update was missed (Table 6-5), the goal lattice system never did.
Addtionally, as shown in Table 6-6, the goal lattice system always had all of the targetsin track

at the end d the simulation.

6.6 Summary

The simulation modd has demonstrated the use a new sensor management methoddogy that
utili zes POSET s to weight misson gals used by the misson manager to prioritize sensor
tasking coupled with an information theoretic based sensor manager. POSETSs provide a
mathematically traceable methoddogy to establi shing priorities that can be used by the sensor
scheduler (OGUPSA) to schedule a suite of sensors to med the goals of a misson. Addtionally,

the use of Information Theory provides a mathematical foundation used by the Information



Table6-3: Summary of the Track initialization Results of Non Prioritized and Goal
L attice Sensor M anagement

Average Interval Between Detection
Average Track Initialization and Track Initiali zation
Target NonPrioritized  Goal Lattice | NonPrioritized  Goal Lattice
1 280 6.8 136 20
2 239 181 17.1 2.7
3 329 325 175 4.3
4 46.8 184 329 2.7
5 253 119 191 4.0
Average 314 175 203 3.1

Table6-4: Transition to Track Failure Results of Non Prioritized and Goal L attice

Sensor M anagement

Transitionto Track Failures Non Prioritized Goal Lattice
Minimum 2 0
Maximum 19 0
Average 8.2 0

Table 6-5: Reacquire Track Failure Results of Non Prioritized and Goal L attice

Sensor M anagement

Reacquire Track Failures Non Prioritized Goal Lattice
Minimum 0 0
Maximum 2
Average 0.6

Table6-6: Targetsin Track at End of Simulation Result of Non Prioritized and Goal

L attice Sensor M anagement

Targetsin Track at End d Simulation Non Prioritized Goal Lattice
Minimum 2
Maximum 5
Average 4.3 5.0
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Instantiator to determine when to request an update to atarget’s date estimate. Difficulty in
completely evaluating this new approach arises from sensor management approaches that are nat
well defined. Thelack of mathematically based sensor management architectures prevent
comparisons and evaluation d the performance of the methoddogy described in this dissertation.
However, aframework now exists for evaluating alternative methods for sensor scheduling,

information instantiation, misson management, and sensor fusion.



Chapter 7

” Summary and Conclusions

While several sensor management approaches have been proposed in the literature, all
appear to suffer from the mixing d sensor physical requirements with information reeds. What
has resulted is a cominging d nat only norcommensurate but inappropriate measures leading to
ad ha methods of sensor management. The dissertation presents a new, original hierarchical
sensor management modd predicated oninformation theoretic measures and partially ordered
sets (POSET). Usingthe expected change in entropy, expected information gain has been shown
to be a valid approach to sensor management in arder to trade-off such functions as search, track,

and identify.

While using information ggin is a necessary condtion, it isnat a sufficient condtion for
complete sensor management. Information gain can be used to perform sensor management
trade-offs but it does nat take into account the multiplicity of competing misson gals. The
approach developed here and demonstrated through a simulation model which overcomes this
limitation, is based onthe use of inclusion relationships amongthe goals and partially ordered sets
of these goals. This facili tated the construction d a hierarchy o goals using a mathematical means
to weight the multiple, competing gals thus establi shing a means to prioritize the sensor

management functions and sensor actions. This methoddogy can be applied to both mili tary and
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civili an situations resulting in a new, quantitative, and traceable measure of importance that a
sensor manager can use to perform and gotimize trade-off among the sensor management

functions.

Chapter 1 described the maotivation for this research alongwith the problem definition. Also,
applications of sensor management were described including the “in harm’s way” scenario, the
search and rescue endeavor of NASA, the management of several low earth arbit satdlitesto

maintain space object ephemeris, and data mining d large databases.

In arder to better understand and define the role of sensor management, a comprehensive
review of current literature was presented in Chapter 2. Basically, sensor management is a process
that performed properly can improve the data fusion processand ultimately our perceptions
through the management and coordination d sensor resources. As aresult of this literature review,
a new comprehensive, mathematically rigorous snsor system nodd was developed to capture the

Sensor management process

Based onthis modd, an ariginal sensor management system was devel oped where a Misson
Manager (MM) and a Sensor Manager interact within the Information Space. The MM relies on
the weights devel oped from the lattice of misson gals and inputs from human gperators to
compute information requests and passes them to the Sensor Manager. The Sensor Manager
maps the information requests to doservation requests and then ultimately schedules tasks to
specific sensors. The Sensor Manager subsumes two separate, distinct, and essentially

orthogoral tasks all owing the sensor manager to be partitioned into the Information Instantiator
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(I) and the Sensor Scheduler. Thell conwerts the information requests from the misson manager
into adbservation requests and passes the observation requests to the Sensor Scheduler where sensor

measurements are optimall y scheduled.

In developing and simulating the sensor management mode, techniques from several
disciplines where used. An extension d POSET s and lattices from abstract algebra, called gaal-
lattices, provides the methoddogy to arder and weight the misson gals and were described in
Chapter 2. Chapter 3 provided a background onthe uses of information theory as applied to
Kalman filtering, data fusion, and sensor management and scheduling. At the conclusion d the
chapter the proposed information measures were developed. The use of Kalman filtering and
the comparison d several exponentially correlated acod eration models were presented in

Chapter 4.

Finally, a simulation modd was developed to demonstrate this new sensor management model
and described in detail in Chapter 5. The results of the simulation mode were then presented in

Chapter 6.

7.1 Contributions

Previous approaches to sensor management have treated the problem as a singe optimization
task with a performance measure as a weighted sum of diverse, nonrcommensurate measures.
The approach developed in this dissertation uses POSET s with superimposed value
apportionment in arder to provide a quantitative and traceable measure of importance (weights)

that a sensor manager can use to perform and gotimize trade-off among competing management
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functions -- e.g. search, track, and identify. Ancther advantage is that these weights can vary asa
function d time or phase of amisson. Different goals are preferred over others and these

change during dff erent phases of a missonin response to changes in the ewironment. A linear
transformation approach was used to map the m-dimensional vector of top level goalsto an-
dimensional vector of goal values for the competing management functions. Properties of the

gaal lattice were also presented including value and structural sensitivity. This new sensor
management system provides a mathematically based methoddogy to change the preferencesin
real-time during a misson based onchanges in information produced by data fusion, a human

operator, or both.

Past sensor management approaches have been ad ha which makes it difficult to compare
different sensor management schemes. This dissertations has developed a hierarchical,
mathematical sensor manager and demonstrated its usein a simulation. The results from the
simulation suggest that this new modd is valid but it was only tested against a randam sensor
management scheme. However, it did succesSully demonstrate the hierarchical approach to
sensor management using a misson manager based onweighting d goals coupled with
partitioning the sensor management probleminto arthogoral tasks (the information instantiator
and the sensor scheduler). The simulation based onthis new modd also highlights the interaction
between the sensors, data fusion, misson management, and sensor management. This new sensor
management modd alongwith the simulation modd provides a basis to compare future

management approaches.
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7.2 Future Research

There are several interesting drections one might pursue in extending both the sensor
management modd and the simulation modd itsdf. Thefirst isthe way that the maximum time
between track updates is computed. The maximum level of uncertainty (a threshdd) whichis nat
to be exceed was used in the simulation. While this provides an estimate of the interval between
track updates, the closed form method described in Chapter 3 should be investigated. Ancother
follow-onto this research would be the development of a closed loop transfer function d the sensor
management system that would allow one to investigate global stability. Further investigation d
the goal lattice sensitivity needs to be dore. One posshility isto develop a methodto identify
classes of gaal lattices by converting them to a “behaviorally equivalent” lattice using techniques

from Sequential Machine Theory.

Addtional work needs to be dore on the smulation modedl also. Different data fusion
methoddogies from the literature need to be reviewed for posgbleinclusioninthemodd. This
would allow different data fusion approaches (e.g. Bayesian versus Dempster-Shafer or
centrali zed versus decentrali zed) to be studied in concert with dfferent sensor management

moadds.

Anather modd improvement would remove the limitation onsensor locations. The modd
could be enhanced to hande sensors at any location and nd limit them to being located on
orthogoral axes. Lastly, a better method d representing the undetected target pdf would
sigrificantly improve the simulation run time. Cortinually updating 10° is computationally

expensive. An analog representation, e.g. a phasphor screen, of the search area (undetected



target pdf) could be used in a real-time system. As a sensor observes a portion d the search area,
theintensity of the correspondng location onthe screen increases while areas nat searched would
decreasein intensity. This greenintensity could then be processed to determine future search
locations and entropy calculations to measure the increase of information cue to sensor

observations.
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Appendix 1

Below arealist of goals used in developing the NASA POSET and lattice. The goals are
based ona combination d NASA goals documented in their strategic plan and gals added by the
author. Thefirst column is the node number assgned to the goal (numbered I€eft to right and top to

bottom) stated in column 2. The third column is alist of goals included in the goal.

Goal Number Goal Included Goals

1 to explore, use, and enable the development of spacefor human 4,5
enterprise

2 to use the environment of space for research 6,7,8,9

3 to enable techndogy development and transfer 10,11

4 to conduct human and robotic missons to planets and dher 12,13
bodesin aur solar system to enable human expansion

5 to provide safe and aff ordable human accessto space 14, 15,16

6 to share knowledge of the Earth system and mysteries of the 17,18
universe

7 to create an international capabili ty to forecast and assessthe 19
health o the Earth system

8 to create avirtual presence throughaut our solar system 20

9 to support research endeavors in space and onEarth 20,21

10 To develop cutting-edge aeronautics and space systems 22,23
techndoges

11 To support the maturation d aerospace industries 24, 25, 26

12 to conduct human missons of exploration d other bodesinthe 43
solar system

13 to enable future exploration beyond Earth’'s orbit 43

14 to enable the full commercial potential of space 27

15 to establi sh a human presence in space 43

16 to share the human experience of being in space

17 to aid in achieving the science, math and techndogy gals of the 43
u.S.

18 to dsseminate information about the Earth system

19 to advance the scientific knowledge and understanding d the 28

Earth, solar system, and the universe
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Goa Number Goal

20
21

22

23

24

25
26

27
28

29
30
31
32
33
34

35
36
37
38

39

40

41
42
43
44
45
46
47
48
49
50
51
52
53

capabili ties in the space ewvironment
to enable U.S. leadership in gdobal civil aviationthrough safer, 33
cleaner, quieter, and more aff ordable air trave

to revolutionize air travel and the way in which aircraft are 34, 35, 36
designed, built and qerated

to enable or provide aerospace R& D services, facili ties and 37
expertise

to promote the commercial development of space
to enable the productive use of science and techndogyin the
pubic and private sectors

to reduce the cost of accessto space 43

to preserve the environment by studying the Earth as a planet and 38, 39
as asystem

to search for life beyond Earth 43

to explore the universe to enrich human life 43

to dscover planets around dher stars

to solve mysteries of the universe 40

to preserve our freedoms for future generations

to share knowledge and techndog es to enhance the quality of life 41
on Earth

to conduct aeronautic and space research

to apply new aeronautic and space system techndoges 42
to enable the expansion d space research and explorations

to increase our understandng d the dfect of natural and human-
induced activities on Earth

to develop predictive environmental, climate, and ratural disaster
modds

to chart the evolution d the universe and understand its galaxies, 43
stars, planets and life

to transfer innowative space techndoges 43
to test space techndogy 43
to increase knowledge of Mars 44, 45
to determine if humans can liveon Mars 46
to determineif lifeon Mars exists 47,48
to find suitable site for settlement 47
to explore Mars 49, 50
to analyze samples of mars 50
to measure as much o surface as possble 51, 52
to navigate 53, 54
to maximize duration d misson 55
to assessmineral content 56
to plan path 57
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to usethe environment of space to expand scientific knowledge 29, 30, 31, 32
to expand science knowledge through the use of human 29, 30, 31, 32



Goa Number Goal

54
55
56
57
58
59
60
61
62

to avoid dbstacles

to conserve on-board resources

to verify data taken by other means
to avoid stationary obstacles

to avoid moving dostacles

to analyze the atmosphere of Mars
to analyze sample

to search for objects

to track objects

Included Goals

57,58

59, 60, 61, 62
59, 60, 61
61, 62

62



Appendix 2

Below arealist of goals used in developing the USAF POSET and lattice. Thegoels are
based onseveral USAF and Joint Chief of Staff doctrine manuals and course material from the
USAF s Air Command and Staff College material. Thefirst column is the node number assgned
to the goal (numbered left to right and top to bottom) stated in column 2. Thethird columnisalist

of goalsincluded in the goal.

Goal Number Goal Included Goals
0 to compel adversary to due our will 1

1 to achieve control of theair 2,3,4,5

2 to deny enemy freedom to carry out off ensive operations 6,7,8

3 to dotain and maintain air superiority 9,10 11, 12
4 to allow friendy forces to perform their misson 13

5 to control tempo o battle operations 14, 1516

6 to defend lines of communication 17,18

7 to protect bases 17,18

8 to protect forces 17,18

9 to minimize losses 19, 29, 21

10 to minimize personrd losses 21

11 to minimize weapons expendture 21

12 to seize theinitiative with concentration d forces 22,23, 24, 25
13 to protect friendy aircraft enroute to their target(s) 39,40

14 to reutralize units not yet engaged by land forces 26, 27, 28

15 to support surface forces in the surface battle 29

16 to reduce ability of enemy to plan & cortrol units & tempo 30, 31, 32, 33
17 to destroy aircraft trying to penetrate airspace 34

18 to destroy enemy a/c trying to attack friendy forces 34

19 to avoid own detection 35, 36, 37

20 to minimize fuel usage 36, 37

21 to minimize uncertainty about environment 48, 49

22 to destroy the enemy's will to wage an effective air war 50
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Goa Number Goal

23
24
25
26
27
28
29

30
31
32
33
34
35
36
37
38
39
40
41
42
43

44

45

46

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

to reutralize enemy's will to wage an effective air war
to dsrupt enemy's will to wage an effective air war
to negate surface based enemy air defenses

to dday units nat yet engaged by land forces

to dsrupt units nat yet engaged by land forces

to destroy units nat yet engaged by land forces

to create opportunities for maneuver or advance of friendy
forces

to dvert combat and logistic assts to defend routes
to dday buildup of combat strength

to degrade dficiency with which asts can be used
to deny enemy mobili ty

to destroy threatening enemy aircraft

to navigate

to avoid threats

to route plan

to negate enemy SAM air defense

to negate enemy AAA air defense

to protect the flank of friendy forces

to blunt enemy off ensive maneuvers

to protect the rear of surface forces during retrograde maneuvers

to destroy enemy potential beforeit can effectively be used
against friendy forces
to dsrupt enemy potential before it can eff ectively be used
against friendy forces

to dvert enemy potential beforeit can eff ectively be used against

friendy forces

to dday enemy potential before it can effectively be used against

friendy forces

to intercept threatening enemy aircraft

to maintain currency of enemy's order of battle
to assess s$ate of enemy readiness

to reutrali ze/destroy enemy aerospace forces
to reutralize SAM air defense

to degrade SAM air defense

to destroy SAM air defense

to reutralize AAA air defense

to degrade AAA air defense

to destroy AAA air defense

to target particular enemy equipment

to destroy enemy surface forces

to destroy enemy movement networks

to destroy enemy C3 networks

to destroy enemy combat supgies

13t

Included Goals
50

50

38, 39

57

57

57

40, 41, 42

43, 44, 45, 46
43, 44, 45, 46
43, 44, 45, 46
43, 44, 45, 46
47

90

84, 85, 88, 90
48

51, 52, 53

54, 55, 56

57

57

57

58, 59, 60, 61

62, 63, 64, 65
66, 67, 68, 69
70,71,72,73

75
74
74
75
76
76
76
77
77
77
75
80
80
80
80



Goa Number Goal

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
81
81
82
83
84
85
86
87
88
89
90

to dsrupt enemy surface forces

to dsrupt enemy movement networks

to dsrupt enemy C3 networks

to dsrupt enemy combat suppies

to dday enemy surface forces

to dday enemy movement networks

to dday enemy C3 networks

to dday enemy combat supgies

to dvert enemy surface forces

to dvert enemy movement networks

to dvert enemy C3 networks

to dvert enemy combat suppies

to coll ect intelli gence

to engage enemy targets

to physically attack SAM air defense

to dectronically attack AAA air defense
toid all detected targets

to cetect threats

to target a particular enemy surface force
to target a particular enemy movement network
to target a particular enemy C3 network
to target particular enemy combat suppies
to id enemy targets

toid neutral targets

toid friendy targets

to detect a enemy ground target

totrack all detected targets

toid targets

to search for enemy targets
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Included Goals

81
81
81
81
82
82
82
82
83
83
83
83
75
78,79, 88
79
79
84, 85, 86
90
87
87
87
87
89
89
89
90
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